Combined K-5 Mystery Science Planning Guide

1

Kindergarten Planning Guide Grade 1 Planning Guide Grade 2 Planning Guide Grade 3 Planning Guide Grade 4 Planning Guide Grade 5 Planning Guide Combined K-5 Planning Guide

What is Included in this Document?

Grade Level Pacing Guides

The Pacing Guide is a resource to support your year-long planning. The units can be taught in any order. In most units, the Mysteries build on one another. Therefore, we strongly recommend the Mysteries within each unit are taught in the sequence they are presented. If you have more time, each unit can be extended by using items from the Optional Extras.

Mystery Science - NGSS Alignment

Mystery Science is aligned to the Next Generation Science Standards. Each Mystery is aligned to a topic, performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts. This document explains how each Mystery is aligned to the NGSS standards.

Table of Contents

Kindergarten	: <u>Pacing Guide</u>	Earth & Space Sciences	Life Sciences	Physical Sciences
1st Grade:	Pacing Guide	Earth & Space Sciences	Life Sciences	Physical Sciences
2nd Grade:	Pacing Guide	Earth & Space Sciences	Life Sciences	Physical Sciences
3rd Grade:	Pacing Guide	Earth & Space Sciences	Life Sciences	Physical Sciences
4th Grade:	Pacing Guide	Earth & Space Sciences	Life Sciences	Physical Sciences
5th Grade:	Pacing Guide	Earth & Space Sciences	Life Sciences	Physical Sciences

Mystery Science Kindergarten - Pacing Guide

Mystery Science recommends teaching the mysteries within each unit in the order they are presented. The units themselves can be taught in any order. The core Mystery (exploration & activity) are designed to take 30-45 minutes per week, with 1 hour of Optional Extras per Mystery. The Read Along Mysteries offer an opportunity to develop students' literacy as they learn science.

	Force Olympics (6-9 weeks)	Weather Watching (6-9 weeks)	Plant & Animal Secrets (6-9 weeks)
Week 1	Mystery 1: What's the biggest excavator? (Foundational for K-PS2-1, K-PS2-2)	Mystery 1: Have you ever watched a storm? <i>(K-ESS2-1)</i>	Mystery 1: Why do woodpeckers peck wood? (K-LS1-1)
Week 2	Mystery 2 Read Along: Why do builders need so many big machines? (<i>Foundational for K-PS2-1, K-PS2-2</i>)	Mystery 2 Read Along: How can you get ready for a big storm? <i>(K-ESS3-2)</i>	Mystery 2 Read Along: Where do animals live? <i>(K-ESS3-1)</i>
Week 3	Mystery 3: How can you knock down a wall made of concrete? (K-PS2-1 and K-PS2-2)	Mystery 3: What will the weather be like on your birthday? <i>(K-ESS2-1)</i>	Mystery 3: How can you find animals in the woods? (<i>K-LS1-1</i>)
Week 4	Mystery 4 Read Along: How can you knock down the most bowling pins? (K-PS2-1)	Mystery 4 Read Along: How do you know what to wear for the weather? (K-ESS2-1)	Mystery 4 Read Along: How do animals make their home in the forest? <i>(K-ESS2-2)</i>
Week 5	Mystery 5: How can we protect a mountain town from falling rocks? (<i>K-PS2-2, K-2-ETS1-2, K-2-ETS1-3</i>)	Mystery 5: How could you warm up a frozen playground? (<i>K-PS3-1, K-PS3-2, K-2-ETS1-2, K-2-ETS1-3)</i>	Mystery 5: How do plants and trees grow? (K-LS1-1)
Week 6	Mystery 6 Read Along: How could you invent a trap? (K-PS2-2, K-2-ETS1-2)	Mystery 6 Read Along: How could you walk barefoot across hot pavement without burning your feet? (K-PS3-1, K-PS3-2)	Mystery 5 - Part 2 : How do plants and trees grow? <i>(K-LS1-1)</i>
Week 7			Mystery 6 Read Along: Why would you want an old log in your backyard? <i>(K-ESS3-3)</i>

Have extra time? "Optional Extras" are extensions to each Mystery. We recommend you use them during your unit or to extend the length of each unit. They include an informational text reading that builds on the Mystery's topic, assessments, and suggestions for supplemental activities.

More Science each week	Longer Science units	Cross Curricular Integration
Use items from the Optional Extras to extend each Mystery if you have more time.	Add a week after each Mystery to teach items from the Optional Extras.	If you want to extend the Mystery but don't have extra time, use Optional Extras during literacy time.

2

Weather Watching (6-9 weeks) Weather Conditions, Instruments, & Seasons Kindergarten Mystery Science & NGSS Alignment - Earth and Space Sciences (ESS)

Profound Perspective: This unit will help students develop the habit of becoming weather watchers who take pleasure in noticing weather patterns and predicting changes.

Kindergarten Earth and Space Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 1 Have you ever watched a storm?	K-ESS2-1	Weather Conditions & Tracking	The weather is always changing around us! For example, sometimes we need a coat, or an umbrella, and other days we don't. Weather isn't just one thing, there are different factors that affect the weather. When you are a weather watcher, you observe the weather around you. DCIs: ESS2.D	Students obtain information through observations of the weather. They communicate the information by acting as a weather watcher and creating drawings of the weather conditions.	Students observe weather patterns . They understand weather as a pattern in the natural world.
Mystery 2 Read Along How can you get ready for a big storm?	K-ESS3-2	Weather Conditions & Preparation	Weather is usually mild but it can quickly become severe. Weather tracking helps us know when to prepare for weather hazards. When the weather becomes severe you may see the sky get darker, the temperature drop, the wind increase, and even precipitation fall. Knowing how to prepare for weather hazards keeps people safe. DCIs: ESS3.B, ETS1.A	Students track the weather daily and analyze the data by collecting, recording, and sharing their observations. They act as weather reporters and ask questions based on observations of weather to find out more information about the natural world.	Students observe weather patterns . They understand weather as a pattern in the natural world. Students explore the cause and effect relationship between weather tracking and hazard preparation.
Mystery 3 What will the weather be like on your birthday?	K-ESS2-1	Seasons & Patterns	"Weather watchers" see that there are four seasons that each have their own type of weather! Winter is cold, snowy, and trees are bare; spring is warmer, rainy, and new leaves begin to grow; summer is hot and trees have a lot of leaves; autumn is chilly and the leaves begin to fall. The seasons don't just stop, they repeat in a cycle. Therefore, the weather and seasons are a pattern. DCIs: ESS2.D	Students obtain and evaluate information in a series of unnamed drawings of each season. They use clues in the picture to argue for the season they think the picture represents. Next, they use these clues to sequence the seasons in the correct cycle.	Students use their observations of the weather in each season to identify patterns . They determine the order of the seasons, and notice the pattern that all four seasons repeat each year.

Weather Watching (6-9 weeks) Weather Conditions, Instruments, & Seasons Kindergarten Mystery Science & NGSS Alignment - Earth and Space Sciences (ESS)

Kindergarten Earth and Space Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 4 Read Along How do you know what to wear for the weather?	K-ESS2-1	Weather & Daily Patterns	Weather changes over time, like in the seasons, but it can also change throughout the day. It is usually cooler in the mornings and evenings when the sun isn't out, and warmer in the afternoon when the sun is shining high above us. DCIs: ESS2.D	Students develop and use models of weather instruments and use them to carry out an investigation . Using the instruments students determine the direction of the wind, and how much rain has fallen. Students analyze the data to determine weather trends.	Students observe weather patterns . They understand temperature changes throughout the day as a pattern in the natural world.
^{Mystery 5} How could you warm up a frozen playground?	K-PS3-1 K-PS3-2* K-2-ETS1-2 K-2-ETS1-3	Sun, Heat, & Engineerin g	The sun is very far away from earth, but also very important to us. It gives off <i>so</i> much light and heat that it warms Earth's surface. If a place doesn't get enough sunlight, it becomes very cold. Engineers can solve this problem by designing a tool that increases the warming effect of the sun on a specific place. *This Mystery uses an activity that <i>increases</i> the warming effect of sunlight on an area. DCI's: PS3.B, ETS1.B, ETS1.C	Students define the problem that Chill City, a valley town surrounded by mountains, does not get enough sunlight in the winter. Using various materials, they carry out an investigation to test which materials can redirect sunlight. Using this information, they design a solution to help bring sunlight to various locations in Chill City.	Students consider the cause and effect relationship between sunlight exposure and the temperature on Earth's surface.
Mystery 6 Read Along How could you walk barefoot across hot pavement without burning your feet?	K-PS3-1 K-PS3-2	Sun & Heat	The sun warms Earth's surface. Places that get a lot of sunlight have warmer temperatures, and shaded places that get less sunlight have cooler temperatures. DCI's: PS3.B	Students obtain and evaluate information from a map of the pool. Analyzing the hot and cool surfaces, they design a solution to get a person across the pool without burning their feet. Students analyze an image of a playground and construct an explanation about what areas would be coolest and hottest. Students conduct an investigation to determine the warmest and coldest spots outside on a sunny day.	Students consider the cause and effect relationship between the amount of sunlight an area gets and its temperature.

____4

Plant & Animal Secrets (6-9 weeks) Plant and Animal Needs Kindergarten Mystery Science & NGSS Alignment- Life Science (LS)

Profound Perspective: Animals and plants need things in order to survive, and their lives are *all* about meeting those needs... it's the secret to why they do the many strange and wonderful things that they do! Knowing how they meet their needs can even help you find plants and animals near where you live.

Kindergarten Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 1 Why do woodpeckers peck wood?	K-LS1-1	Needs: Food	All animals need to find food in order to survive. They go about finding food in different ways, but all animals have this need in common. Knowing that animals have this need can help you find animals where you live, as well as help you make sense of their behaviors. DCIs: LS1.C	Students obtain information through observations of different animal behaviors. They use evidence from their observations to argue for their explanation of why animals are acting in these ways. Students act out the behaviors of different animals.	Students study animal behaviors to identify the pattern that all animals have behaviors that include seeking out food to survive.
Mystery 2 Read Along Where do animals live?	K-ESS3-1		Living things need food, water, shelter, and many other resources to survive! All living things live in places that provide the needs they have to survive. Not all living things live in a house, like humans do. Animals live in many different types of homes close to their resources. DCIs: ESS3.A	Students obtain information through media about how different animal homes are built. They communicate this information in order to identify patterns in the natural world.	Students identify the pattern that all living things live where their needs are met. They recognize that plants, animals, and their surroundings make up a system as parts that work together.
Mystery 3 How can you find animals in the woods?	K-LS1-1	Animal Needs: Safety	All animals need to find safety (protection) in order to survive. They go about finding safety in different ways, but all animals have this need in common. Knowing that animals have this need can help you find animals where you live, as well as help you make sense of their behaviors. DCIs: <i>Extends</i> LS1.C	Students obtain information through observations of different animal behaviors. They use evidence from their observations to argue for why animals are acting in these ways. Students act out the behaviors of different animals.	Students study animal behaviors to identify the pattern that all animals have the behavior seeking out safety to survive.

5

(continued)

Plant & Animal Secrets (6-9 weeks) Plant and Animal Needs Kindergarten Mystery Science & NGSS Alignment- Life Science (LS)

Kindergarten Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 4 Read Along How do animals make their home in the forest?	K-ESS2-2	Changing the Environment	All living things need food and safety to survive. Animals can't always find shelter or something to eat lying around, so they have to change their environment to meet their needs. Animals change the environment in many ways - they dig for food, build homes, create hiding spots, and much more! DCIs: ESS2.E	Students take a nature walk to carry out an investigation exploring which types of animals live around them and what their homes are like. They analyze and interpret data by using their observations to describe the patterns they see.	Students begin to recognize that plants, animals, and their surroundings make up a system as parts that work together.
Mystery 5 How do plants and trees grow?	K-LS1-1	Plant Needs: Sunlight	Plants are alive, just like animals. They grow over time, and have similar needs (like water). However, there are some big differences between plants and animals. Plants don't have legs so you won't see them walking around. They also don't have mouths or eat food the way we do. They need water <i>and</i> sunlight. DCIs: LS1.C	Students plan and carry out an investigation to determine how light affects plant growth. They grow radish plants in light and dark conditions for four days and then analyze their data . Using this data, students engage in an argument from evidence about which plant is healthier and why.	Students study plant growth under different conditions to identify the pattern that all plants have survival needs.
Mystery 6 Read Along Why would you want an old log in your backyard?	K-ESS3-3	Animal Needs & Changing the Environment	People make changes to their environment so that they can live comfortably. They cut down trees, use energy to produce materials and products, and much more. When people make changes to their environment they use resources needed by other living things. It is important to make choices that reduce our impact on the habitat we share. DCIs: ESS3.C	Students obtain and evaluate information by virtually keeping watch on a log and reporting about the living things that visit it. They communicate information by drawing a log and the animals that would use it as their habitat.	Students consider the cause and effect relationship between the changes people make to their environment and the impact it has on other living things that share their habitat.

6

Force Olympics (6-9 weeks) Forces, Machines, & Engineering Kindergarten Mystery Science & NGSS Alignment - Physical Science (PS)

Profound Perspective: This unit will help students develop their first concept of "force," and the idea that by playing with forces and thinking about them, we can accomplish surprisingly big things.

Kindergarten Physical Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 1} What's the biggest excavator?	Foundational for K-PS2-1 K-PS2-2	Pushes, Pulls & "Work Words"	Machines multiply the work a human can do - making the work easier! A machine's force is stronger than a human's force. For example, digging a hole takes less work with a shovel than it does with your hands. It takes even less work if you use a bigger machine, like a bulldozer! DCIs: Foundational for PS2.A, PS2.B, PS2.C	Students obtain information through observations of different machines. They use evidence from their observations to argue for their explanation of why machines make work easier. Students act out the "work words" of different machines.	Students consider the effects that machines can have when completing a task.
Mystery 2 Read Along Why do builders need so many big machines?	Foundational for K-PS2-1 K-PS2-2	Pushes, Pulls & "Work Words"	There are many different types of machines and each one has a unique job. Machines help people by making their work faster and easier. Machines help people do things like dig, lift, dump, push, and mix! Without machines, it would take a lot longer to build new things. DCIs: <i>Foundational</i> for PS2.A, PS2.B, PS2.C	Students obtain information through footage of different construction equipment being used in different ways. Student communicate about the information by discussing what each machine does using "work words".	Students consider the cause and effect relationship between the movement of a machine and the work it can do.
Mystery 3 How can you knock down a wall made of concrete?	K-PS2-1 K-PS2-2	Strength & Direction of Force	Machines create pushes and pulls, or "forces". A wrecking ball is a machine that uses a push to knock things over. By changing the strength and direction of the push, you can make the force larger or smaller. DCIs: PS2.A, PS2.B, <i>Foundational</i> PS3.C and ETS1.A	Students carry out an investigation to determine how far back they should pull their model wrecking ball to knock down a wall, but not the houses behind it. They analyze the data collected in their investigation to discuss how the force of the wrecking ball changes when you change the strength and direction of its push.	Students analyze the effect of changing the strength and direction of a wrecking ball's push. They experiment with different heights to determine how the push, or force, is changed.

(continued)

Force Olympics (6-9 weeks) Forces, Machines, & Engineering Kindergarten Mystery Science & NGSS Alignment - Physical Science (PS)

Kindergarten Physical Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 4 Read Along How can you knock down the most bowling pins?	K-PS2-1	Strength & Direction of Force	To move an object farther or faster, a bigger push or pull is needed. When objects collide they push on one another causing a change in direction and speed. By changing the force acting on an object, you can change the motion of the object. DCIs: PS2.A, PS2.B, Foundational PS3.C	Students carry out an investigation by 'bowling' with solo cups (pins), a tennis ball (bowling ball), and pool noodles (bumpers). They explore the forces at work when one thing hits another, and how changing the size of the force affects the motion of an object.	Students analyze the cause and effect relationship between the size of the force on an object and the direction or speed it goes.
Mystery 5 How can we protect a mountain town from falling rocks?	K-PS2-1 K-PS2-2 K-2-ETS1-2 K-2-ETS1-3	Forces & Engineering	Pushes and pulls can have different strengths. The faster an object moves, or the larger it is, the stronger it pushes on something when it bumps into it. Sometimes a push or pull is so strong that it makes an object start moving, or stop moving! Pushing or pulling on an object can even change the direction an object is going. We can use scientific knowledge to help people solve a problem. DCIs: PS2.A, PS2.B, PS3.C, ETS1.B, ETS1.C	Students use a model of a mountain town, Tiny Town, to conduct an investigation of how to protect the town from a falling boulder. They design a solution to safely guide a boulder down the hill so it doesn't hit the town and rolls into a dump truck. Using pushpin poles, students change the direction the boulder is rolling.	Students consider the cause and effect relationship between a force and an object's speed or direction.
Mystery 6 Read Along How could you invent a trap?	K-PS2-2 K-2-ETS1-2	Forces & Engineering	Inventors design solutions to solve problems. Anyone can be an inventor! Inventors create new ideas, and many use engineering and design to help them. Inventors use their knowledge to create something new. In this story, two inventors use a pull to help them solve a problem. DCIs: PS2.A, ETS1.A, ETS1.B, ETS1.C	Students design a solution to help the boo characters solve a problem. Then, they define a problem by choosing a chore they don't like doing. Next, they design solution by sketching a machine that could help them. They compare their solutions with a partner.	Students consider the structure and function of existing materials and tools in order to create new uses for them in order to solve a problem.

Mystery Science Grade 1 - Pacing Guide

Mystery Science recommends teaching the mysteries within each unit in the order they are presented. The units themselves can be taught in any order. The core Mystery (exploration & activity) are designed to take 30-45 minutes per week, with 1 hour of Optional Extras per Mystery. The Read Along Mysteries offer an opportunity to develop students' literacy as they learn science.

	Spinning Sky (6-9 weeks)	Light & Sounds (6-9 weeks)	Plant & Animal Superpowers (6-9 weeks)
Week 1	Mystery 1: Could a statue's shadow move? (1-ESS1-1)	Mystery 1: How do they make silly sounds in cartoons? (1-PS4-1)	Mystery 1: Why do birds have beaks? (1-LS1-1)
Week 2	Mystery 2 Read Along: What does your shadow do when you're not looking? (1-ESS1-1)	Mystery 2 Read Along: Where do sounds come from? (1-PS4-1)	Mystery 2 Read Along: Why do baby ducks follow their mother? (1-LS1-2)
Week 3	Mystery 3: How can the sun help you if you're lost? (1-ESS1-1)	Mystery 3: What if there were no windows? (1-PS4-3)	Mystery 3: Why are polar bears white? (1-LS1-1)
Week 4	Mystery 4 Read Along: Why do you have to go to bed early in the summer? (1-ESS1-2)	Mystery 4 Read Along: Can you see in the dark? (1-PS4-2)	Mystery 4 Read Along: Why do family members look similar to one another? <i>(1-LS3-1)</i>
Week 5	Mystery 5: Why do the stars come out at night? (1-ESS1-1)	Mystery 5: How could you send a secret message to someone far away? (1-PS4-4, K-2-ETS1-2)	Mystery 5: Why don't trees blow down in the the wind? (1-LS1-1, K-2-ETS1-2, K-2-ETS1-3)
Week 6	Mystery 6 Read Along: How can stars help you if you get lost? (1-ESS1-1)	Read Along Mystery 6:How do boats find their way in the fog? <i>(1-PS4-4)</i>	Read Along Mystery 6: What do sunflowers do when you're not looking? (1-LS1-1)

Have extra time? "Optional Extras" are extensions to each Mystery. We recommend you use them during your unit or to extend the length of each unit. They include an informational text reading that builds on the Mystery's topic, assessments, and suggestions for supplemental activities.

More Science each week	Longer Science units	Cross Curricular Integration
Use items from the Optional Extras to extend each Mystery if you have more time.	Add a week after each Mystery to teach items from the Optional Extras.	If you want to extend the Mystery but don't have extra time, use Optional Extras during literacy time.

Spinning Sky (6-9 weeks) Sun, Moon, & Stars Grade 1 Mystery Science & NGSS Alignment - Earth & Space Sciences (ESS)

Profound Perspective: This unit will help students develop the idea that the Sun, Moon, and stars change position in the sky in ways that are fun to watch and predict.

Grade 1 Earth & Space Sciences	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 1} Could a statue's shadow move?	1-ESS1-1	Sun, Shadows, & Daily Patterns	Patterns of motion are all around us; they're even in the sky! If you observe a still object throughout the day, you'll see that its shadow changes. The Sun doesn't stay in the same place all day. It is the Sun's movement across the sky that changes the shape of an object's shadow. DCIs: ESS1.A	Students conduct two investigations . In the first, they place a gnome in the sun and trace its shadow. They observe how the shadow changes as time passes, or as the sun moves across the sky. In their second investigation , they use model gnomes to analyze how to move a light source to change the shape and length of the shadow of the gnome. Interpreting this data , they construct an explanation about what causes a shadow to move.	Students consider the movement of shadows to be caused by the pattern of the sun's movement across the sky.
Mystery 2 Read Along What does your shadow do when you're not looking?	1-ESS1-1	Sun, Shadows, & Daily Patterns	Each day, the Sun moves across the sky in an arch shape. It is low in the mornings, high in the afternoon, and low again in the evenings. When the Sun is low in the sky, it makes shadows long. When it is high in the sky, shadows are short. If you look closely, you'll notice your shadow also changes sides in the morning and evening. DCIs: ESS1.A	Students conduct an investigation to gather information about how their shadow changes throughout the day. They trace their shadow in the morning and afternoon, then analyze the data to identify differences in the shadows. Using the data, they construct an explanation about why their shadows point in different directions.	Students explain changes in shadows by considering the patterns in the Sun's movement across the sky. They identify the cause and effect relationship between the height of the Sun in the sky and a shadow's length and direction.
Mystery 3 How can the sun help you if you're lost?	1-ESS1-1	Sun & Daily Patterns	The Sun's movement across the sky is a pattern! We can use its path to help us figure out the direction we're headed. Since we know the Sun always rises in the east, moves across the sky, and sets in the west, we can use the time of day and the Sun's position to figure out which way is east and which way is west. DCIs: ESS1.A	Students develop a Sun Finder, a model of the Sun's movement across the sky. Using the model , they reason about how the sun can help guide them during the day. Since they know that they walked toward the Sun to get to their friend's house in the morning, they must use evidence to argue whether they should walk toward or away from the Sun to get home in the afternoon.	Students analyze the pattern of the Sun's movement across the sky each day.

Spinning Sky (6-9 weeks) Sun, Moon, & Stars Grade 1 Mystery Science & NGSS Alignment - Earth & Space Sciences (ESS)

Grade 1 Earth & Space Sciences	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 4 Read Along Why do you have to go to bed early in the summer?	1-ESS1-2	Sun & Seasonal Patterns	Depending on the season, it takes different amounts of time for the Sun to move across the sky. This makes it seem like some seasons have longer days, and others have shorter days. During the summer, the Sun rises earlier and sets later - there are <i>more</i> hours of daylight. In the winter, the Sun rises later and sets earlier - there are <i>less</i> hours of daylight. DCIs: ESS1.B	Students obtain information about the seasonal patterns of sunrise and sunset through a printable student reader. Students read the text independently to determine seasonal daylight patterns.	Students consider the pattern that there are more hours of daylight during the summer than there are in the winter.
Mystery 5 Why do the stars come out at night?	1-ESS1-1	Stars & Daily Patterns	It seems that stars only come out at night, but they are actually always there. It's just that we can only see them at night. We can't see stars during the day because the Sun is out and its brightness outshines the stars. When the Sun sets, the stars are not outshone and you can see them. It isn't just the Sun that outshines stars, this is true about any bright light. If the moon is very bright, or there are bright city lights, it will be harder to see stars. DCIs: ESS1.A	Students develop and use a model of the Big Dipper in the night sky. They carry out an investigation to determine why stars are only visible in the night sky. Students construct an explanation about the stars being outshone by the Sun in the daytime sky, and then being visible again when the Sun sets.	Students consider the pattern that the stars are only visible in the night sky. They explore the cause and effect relationship between the Sun's brightness and the visibility of the stars.
Mystery 6 Read Along How can stars help you if you get lost?	1-ESS1-1	Stars & Seasonal Patterns	There are groups of stars in the sky that form a pattern; they are called constellations. One constellation, the Big Dipper, can help us find where the North Star is! Even though the Big Dipper changes its spot in the sky in different seasons, it always points to the North Star. DCIs: ESS1.A	Students obtain, evaluate, and communicate information about the cardinal directions. They conduct an investigation to determine which direction each part of their classroom is facing.	Students consider the pattern that stars are in different places in the sky during different seasons. They consider the pattern that the Big Dipper help us find the North Star.

Light & Sounds (6-9 weeks) Properties of Light & Sound Grade 1 Mystery Science & NGSS Alignment - Physical Science (PS)

Profound Perspective: This unit will develop the idea that by exploring the properties of light and sound, human beings create fun and useful things.

Grade 1 Physical Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 1 How do they make silly sounds in cartoons?	1-PS4-1	Sounds, Vibrations	There are so many different types of sounds! Some are loud, soft, high, low, or even silly. People are capable of making a lot of different sounds. Each sound is made with a back and forth movement, called a vibration. Different vibrations make different sounds. DCIs: PS4.A	Students carry out investigations exploring how to make different sounds. First, they use their hands and feet to make the sounds of a rain storm. Next, they use the vibration of a ruler to create a 'boing' sound as the soundtrack to a bouncing ball animation. Students construct the explanation that objects vibrate when they make a sound, and if the vibration stops, the sound stops as well.	Students consider the relationship between vibrations (cause) and sound (effect).
Mystery 2 Read Along Where do sounds come from?	1-PS4-1	Sounds,	Sounds are caused by an object vibrating. If a vibration stops, then the sound will stop too. Musical instruments make many unique and interesting sounds! When an instruments makes music, it comes from a part of the instrument vibrating. DCIs: PS4.A	Students carry out investigations to explore different sounds and how they are created. They create three different sound makers and construct an explanation about where the vibrations are happening in each sound experiment.	Students consider the relationship between vibrations (cause) and sound (effect).
Mystery 3 What if there were no windows?	1-PS4-3	Materials, Transparent & Opaque	Glass is a transparent material, it is see-through and light can pass through it. Imagine what life would have been like with no glass. There would have been no windows, no eyeglasses, and even no windshields in a car! There are also materials that are <i>somewhat</i> see-through (some light can pass through) called translucent materials. Materials that are not see-through at all (no light can pass through) are called opaque materials. DCIs: PS4.B	Students investigate the difference between transparent, translucent, and opaque materials by sorting them. They determine whether a material is transparent, translucent or opaque. Students then create a stained glass window using tissue paper. In this activity, they construct an argument to answer what happens to tissue paper when it is layered.	Students reason about the cause and effect relationship between the type of material (cause) and the amount of light that can pass through it (effect).

Light & Sounds (6-9 weeks) Properties of Light & Sound Grade 1 Mystery Science & NGSS Alignment - Physical Science (PS)

Grade 1 Physical Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 4 Read Along Can you see in the dark?	1-PS4-2	Illumination	If you've ever been in a completely dark space, you know you can't see anything! Even the slightest bit of light helps us see our surroundings. In a dark room there is often light from the hallway coming in through the crack under the door. The night sky is full of bright stars, and roads have street lights. Objects can only be seen if they are illuminated or give off their own light. DCIs: PS4.B	Students carry out an investigation using a Mystery Box. They look inside the completely dark box to see if they can see the shape of the object inside. They allow more light in through peepholes to illuminate the object and allow them to see it. Students use their observations to construct the explanation that objects need light to be seen.	Students consider the cause and effect relationship between light (cause) and being able to see objects (effect).
Mystery 5 How could you send a secret message to someone far away?	1-PS4-4 K-2-ETS1-2	Communication	People use many different devices to communicate over long distances. Cell phones and iPads help us communicate with people far away, but they had to be invented. People don't just communicate with sound, we can also use light. A great example is a traffic light which tells cars to go, slow down, or stop using light signals. DCIs: PS4.C, ETS1.B	Students are presented with the problem that they need to send a message at night, without using noise. They design a solution with a partner by correlating light colors to a specific message. Using their secret code, partners take turns communicating information across the room with light signals.	Students consider light signals and their understood meaning as a pattern .
Mystery 6 Read Along How do boats find their way in the fog?	1-PS4-4	Lights, Sounds, & Communication	Colors, lights, and sounds help us communicate over long distances. Sounds can even help us communicate when it is difficult to see. People who drive cars and boats use colors, lights, and sounds to help them find their way around the road or sea. DCIs: PS4.C	Students obtain information about light and sound signals. They play red light/green light to practice responding to common signals. Students conduct an investigation of different sounds. They find their 'sound partner'the student who has the same sound object in their cup. Students analyze different sounds with their eyes closed. They determine which type of sound they heard.	Students consider that different light and sound signals form a pattern used for communication.

Plant and Animal Superpowers (6-9 weeks) Parts, Survival, & Growth Grade 1 Mystery Science & NGSS Alignment - Life Science (LS)

Profound Perspective: This unit will help students develop the idea that, like a superhero has special powers, every animal and plant has special parts and behaviors that help them to grow and meet their needs.

Grade 1 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 1} Why do birds have beaks?	1-LS1-1	Structure & Survival	All living things have body parts that help them survive and grow. Each kind of animal has special body parts that help them get the food they need to survive. Some animals use their hands, mouth, beaks, trunks, or tongues to eat their food. The shape of the body part they use to get food is best suited for the type of food the animal eats. DCIs: LS1.A	investigation to figure out how much food (straw pieces) they can pick up using each beak. Analyzing these results, students construct arguments using their evidence about which beak would help the birds survive in different environments.	Students consider the relationship between the shape of a bird's beak (structure), and the food it eats (function). They begin to observe the pattern that all animals have structures that help them accomplish unique functions.
Mystery 2 Read Along Why do baby ducks follow their mother?	1-LS1-2	Parenting & Offspring Survival	Offspring, the children of living things, need to get their needs met in order to survive. All offspring need food, shelter, protection, and comfort. They also need to learn how to survive on their own. Animal parents (including humans) have the important job of teaching their offspring how to survive before they grows up. Offspring learn from their parents and rely on them to meet their survival needs when they are young.	Students obtain information about different animal mothers engaging in behavior to help their offspring survive. They evaluate and communicate the information by discussing why each animal mother does each behavior for her offspring.	Students consider the patterns in behavior of parents and offspring that help offspring survive.
Mystery 3 Why are polar bears white?	1-LS1-1	Structure & Survival	This Mystery continues the exploration that animals have body parts to help them survive and grow. Animals have different behaviors and body parts that help protect themselves from danger. The color of an animal's fur, feather, skin, or scales can help them blend in with their habitat. Camouflage helps both prey and predators survive! DCIs: LS1.A	patterned paper moths and trees. They see how many moths they can find in the paper forest. Moths that match the pattern of the tree will be harder to see, while moths that are patterned differently than the tree will be	Students consider the relationship between the color of an animal's fur, feathers, or skin (structure), and how this helps it survive in its habitat (function).They begin to observe the pattern that all animals have structures that help them survive.

Plant and Animal Superpowers (6-9 weeks) Parts, Survival, & Growth Grade 1 Mystery Science & NGSS Alignment - Life Science (LS)

Grade 1 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 4 Read Along Why do family members look similar to one another?	1-LS3-1	Inheritance & Variation of Traits	All living things share similar characteristics with their parents. For example, a baby duckling looks like a duck, not a cow! You'll notice that young animals and plants look similar to their parents, but not identical. DCIs: LS3.A, LS3.B	Students use observations of animal parents and their offspring to construct an explanation about young plants and animals being similar, but not identical, to their parents. They play the game MatchUp, between mother and baby animals, using their knowledge of similar characteristics.	Students consider shared characteristics between parents and their offspring as a pattern .
Mystery 5 Why don't trees blow down in the wind?	1-LS1-1 K-2-ETS1-2 K-2-ETS1-3	Plants & Engineering	All living things have structures, or external parts. Animals use their body parts to help them survive, grow, and communicate. Plants also have external parts that help them to survive. Humans can mimic the structure and function of an animal or plant's external parts to design solutions to their problems. DCIs: LS1.A, ETS1.A, ETS1.B, ETS1.C	Students develop a model of an umbrella and conduct an investigation to test wind's effect on it. Students design a solution to solve the problem of needing a shade structure that won't blow over in the wind, by mimicking a tree's external part.	Students observe the relationship between a tree's roots and leaves (structure) and how they help the tree stand in the wind (function). They apply this relationship in a natural object to a designed object.
Mystery 6 Read Along What do sunflowers do when you're not looking?	1-LS1-1	Plant Survival	Sunflowers move throughout the day so that they are always facing the sun! Their stem bends so that the sunflower always gets as much sun as possible to help it grow. The flower starts the day facing east, where the sun rises, and ends the day facing west, where the sun sets. DCIs: LS1.A, LS1.D	Students conduct an investigation to test how plants respond to light. They observe how the direction a plant grows depends on the position of the light.	Students observe the relationship between a sunflower's flower and stem (structure) and how the flower parts bend to get as much sun as possible throughout the day (function). This response to the environment helps sunflowers grow.

Mystery Science Grade 2 - Pacing Guide

Mystery Science recommends teaching the mysteries within each unit in the order they are presented. The units themselves can be taught in any order. The core Mystery (exploration & activity) are designed to take an hour per week, with 2 hours of Optional Extras.

	Plant Adventures (6-12 weeks)	Animal Adventures (3-6 weeks)	Material Magic (5-10 weeks)	Work of Water (4-8 weeks)
Week 1	Mystery 1: How did a tree travel halfway around the world? (2-LS2-2)	Mystery 1: How many different kinds of animals are there? <i>(2-LS4-1)</i>	Mystery 1: Why do we wear clothes (2-PS1-1, 2-PS1-2, K-2-ETS1-2, and K-2-ETS1-3)	Mystery 1: If you floated down a river, where would you end up? (2-ESS2-2 and 2-ESS2-3)
Week 2	Mystery 2: Do plants eat dirt? (2-LS2-1 and 2-LS4-1)	Mystery 2: Why do frogs say "ribbit"? (2-LS4-1)	Mystery 2: Can you really fry an egg on a hot sidewalk? (2-PS1-1 and 2-PS1-2)	Mystery 2: Why is there sand at the beach? (2-ESS2-2)
Week 3	Mystery 3: Why do trees grow so tall? (2-LS2-1)	Mystery 3: How could you get more birds to visit a bird feeder? (2-LS4-1, K-2-ETS1-1, K-2-ETS1-2, K-2-ETS1-3)	Mystery 3: Why are so many toys made out of plastic? (2-PS1-1, 2-PS1-2 and 2-PS1-4)	Mystery 3: What's strong enough to make a canyon? (2-ESS1-1, 2-ESS2-1 and 2-ESS2-2)
Week 4	Mystery 3 - Activity Part 2 : Why do trees grow so tall? (2-LS2-1)		Mystery 4: What materials might be invented in the future? (2-PS1-1, 2-PS1-2, K-2-ETS1-2, K-2-ETS1-3)	Mystery 4: How can you stop a landslide? (2-ESS2-1, K-2-ETS1-1, K-2-ETS1-2, K-2-ETS1-3)
Week 5	Mystery 4: Should you water a cactus? (2-LS2-1 and 2-LS4-1)		Mystery 5: Could you build a house out of paper? (2-PS1-1, 2-PS1-3, K-2-ETS1-2, K-2-ETS1-3)	
Week 6	Mystery 5: Where do plants grow best? (2-LS2-1 and 2-LS4-1)			

Have extra time? "Optional Extras" are extensions to each Mystery. We recommend you use them during your unit or to extend the length of each unit. They include an informational text reading that builds on the Mystery's topic, assessments, and suggestions for supplemental activities.

More Science each week	Longer Science units	Cross Curricular Integration
Use items from the Optional Extras to extend each Mystery if you have more time.		If you want to extend the Mystery but don't have extra time, use Optional Extras during literacy time.

Plant Adventures Structure, Function & Adaptations Grade 2 Mystery Science & NGSS Alignment - Life Sciences (LS)

<u>Profound Perspective</u>: This unit develops the idea that plants are truly alive and face challenges every bit as dramatic as those of animals. Students will learn that plants have needs, and will reason from evidence to understand how plants meet their needs.

Grade 2 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 1 How did a tree travel halfway around the world?	2-LS2-2	Caad	Many plants start as seeds! There are a lot of different types of seeds, all with unique shapes. In order for more plants to grow, seeds need to move away from the parent plant and grow into a new plant. Plants depend on wind, water, and animals to disperse their seeds. DCIs: LS2.A	Students model seed dispersal by creating three different seed flyers. They investigate how each seed flyers' structure helps the seed disperse.	Students explore how the structure of a seed helps it disperse (function).
^{Mystery 2} Do plants eat dirt?	2-LS2-1 2-LS4-1	Roots, Water, & Minerals	When a seed is in dirt, the first thing to grow are its roots. The plant actually doesn't need the dirt to grow but it does need the water and minerals often found in the dirt. Roots carry these nutrients from the environment to the plant. As long as plants are getting minerals, water, and sunlight, they can grow! There are many types of plants living in different habitats that get their minerals in unique ways. DCIs: LS2.A, LS4.D	Students conduct an investigation using a root viewer to observe how roots grow. Students record what the seed looks like for 2 days, turn the root viewer to the side on Day 3, and record the growth until Day 4.	Students evaluate the effect minerals have on plant growth. Students consider how the structure of plants helps them get the water and minerals they need to survive (function).
^{Mystery 3} Why do trees grow so tall?	2-LS2-1	Light, Leaves, & Competition	We've learned that plants need water and minerals to survive, but they also need light! It's possible to watch plants grow <i>toward</i> light following the sun throughout the day. The leaves of a plant soak up the sun and deliver it to the rest of the plant. Trees compete for sunlight, so their leaves are at the top of the tree and they grow as tall as possible. DCIs: LS2.A	Students make a Grass Head and conduct an investigation to determine the sun's impact on the direction plants grow. Analyzing data from Mystery 1, students predict growth patterns of plants.	Students consider the effect sunlight has on plant growth. Students analyze the role of the leaves (structure) in helping the plant capture sunlight (function).
^{Mystery 4} Should you water a cactus?	2-LS2-1 2-LS4-1	Adaptations & Habitat	All plants need sunlight and water to survive, but they don't need the <i>same</i> amount of them. There are plants that like shade, and live on the forest floor. There are even plants that need small amounts of water and can survive in the hot and dry desert. DCIs: LS2.A, LS4.D	Students analyze the data from their Grass Head in Mystery 3. They compare their growth pattern prediction with the actual results to determine if the grass grew in the direction of the sunlight.	Students consider the cause and effect relationship between a plant's needs and the habitat it survives best in. Students consider how plants have structures that help them survive in their environment (function).

Plant Adventures Structure, Function & Adaptations Grade 2 Mystery Science & NGSS Alignment - Life Sciences (LS)

Grade 2 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 5} Where do plants grow best?	2-LS2-1 2-LS4-1	Adaptations & Habitat	its needs! We've learned that plants need different amounts of sunlight and water. If you planted a cactus in an area that got a lot of rain, it probably wouldn't survive. Knowing a plant's needs helps gardeners and farmers grow plants.	growing conditions in different areas	Students consider the cause and effect relationship between a plant's needs and the habitat it survives best in.

Animal Adventures *Biodiversity* Grade 2 Mystery Science & NGSS Alignment - Life Science (LS)

Profound Perspective: This unit helps students develop a sense of wonder for biodiversity: the sheer range and variety of animals found on earth. Students gain practical experience in identifying animals and sorting them into scientific groups, and apply their knowledge in an engineering design challenge. This unit introduces two critically important concepts in biology: "habitat" and "species," foundational concepts which will be revisited and refined at higher grade levels.

Grade 2 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 1 How many different kinds of animals are there?	2-LS4-1	Biodiversity, Classification & Patterns	There are <i>so many</i> different kinds of animalseven today, we haven't discovered all of them! Before it was easy to travel and visit each other's continents, people only knew about the types of animals from where they grew up. Early scientists eventually started exploring different places and learning about new animals. They discovered the wide variety of living things in habitats, called biodiversity. Scientists organized the animals they discovered into groups based on their shared characteristics. DCI: LS4.D	Students evaluate and communicate information by sorting animals based on their traits and explaining their choices. Then, students sort the animals based on the traits scientists use to classify the animals as mammals, birds, reptiles, and invertebrates. Students determine which group 'challenge animals' belong to, based on their characteristics.	Students identify patterns in animal's characteristics in order to group them.
^{Mystery 2} Why do frogs say "ribbit"?	2-LS4-1	Biodiversity, Species, & Habitats	Frogs are a really neat example of the biodiversity in North America! In just one habitat, there can be many different frog species. Scientists study frog biodiversity by analyzing the different frog sounds they hear in a habitateach frog species has a unique call. The variety of frog species in a habitat, depends on the amount of resources a habitat has. The more resources, the more types of frogs! DCI: LS4.D	Students listen to a variety of frog calls, then analyze the sounds from two different habitats to determine which frogs are there. They then construct an argument from evidence about which habitat is more biodiverse based on the amount of different frog calls.	Students identify patterns in frog calls in order to determine how biodiverse a habitat is.
Mystery 3 How could you get more birds to visit a bird feeder?	2-LS4-1 K-2-ETS1-1 K-2-ETS1-2 K-2-ETS1-3	Biodiversity & Engineering	Not all bird feeders are created equally! Bird feeders come in all shapes, sizes, and colorsthey even hold different types of food. Different bird feeders attract different bird species. People like to see different birds up close, so engineers designed bird feeders to help solve this problem. There are so many different bird feeders and each one has strengths and weaknesses, depending on what type of bird you want to attract! DCI: LS4.D	Students define a problem by stating which type of bird they want to design a bird feeder for, and what its needs are. Each student designs a solution by comparing multiple sketches and developing a model of a bird feeder that best meets the needs of the bird they want to attract. Students reflect on how to improve their prototype.	Students explore the cause and effect relationship between bird feeder design and the type of food in it and the types of birds that visit it.

Material Magic Properties & Phases of Matter Grade 2 Mystery Science & NGSS Alignment - Physical Sciences (PS)

Profound Perspective: This unit develops the idea that by taking advantage of the properties of materials, we can solve many problems in our lives. Students will develop an appreciation for the manmade materials of everyday objects, and learn to recognize that those materials are chosen based on their properties. Through hands-on investigation, students will explore the material properties involved in meeting basic needs (such as clothing and cooking). They'll consider the solid and liquid states of matter to understand why plastic was invented. The unit ends with a brainstorming activity about futuristic inventions that might be possible using new materials.

Grade 2 Physical Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 1} Why do we wear clothes?	2-PS1-1 2-PS1-2 K-2-ETS1-1 K-2-ETS1-2 K-2-ETS1-3	Material Properties & Engineering	Materials have a set of unique properties that determine their use. Clothes are made of material, and we wear them to protect us. We choose clothing based on its properties. For example, if it was hot outside we would wear something light and opaque to protect us from the sun. DCIs: PS1.A, ETS1.A, ETS1.B	carry out an investigation of the properties of the provided materials. Next, each student designs a	Students consider the pattern that different materials share similar properties. Students test the effect a material's properties have on its function.
Mystery 2 Can you really fry an egg on a hot sidewalk?	2-PS1-1 2-PS1-2	Material Properties, Classifying Materials	One interesting property of materials is whether they are an insulator (a material that does not allow the movement of heat) or a conductor (a material that moves heat easily). If you know which property a material has, you can choose the best one for your purpose! DCIs: PS1.A	to test if a material is an insulator. Analyzing the data , they determine which material they would use to pick	Students consider the pattern that different materials share similar properties. Students test the effect a material's properties have on its function.
Mystery 3 Why are so many toys made out of plastic?	2-PS1-1 2-PS1-2 2-PS1-4	Material Changes & Phases of Matter	Another property of materials is if they are meltable or not. If a material is meltable, it melts into a liquid when you heat it up! All meltable material melts at different temperatures. Some may melt in your hands, while others need fire. This property is useful because you can heat a substance, melt it, pour the liquid into any mold, let it cool and harden again to make different shapes. DCIs: PS1.A, PS1.B	data, students compare their	Students observe the pattern that different materials share similar properties. Students consider the cause and effect of heat being added to meltable substances. They observe that when heat (energy) is applied to a meltable substance (matter) it changes shape.

Material Magic Properties & Phases of Matter Grade 2 Mystery Science & NGSS Alignment - Physical Sciences (PS)

Grade 2 Physical Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
$11n_{0}$	2-PS1-1 2-PS1-2 K-2-ETS1-1 K-2-ETS1-2	Material Inventions, Engineering	helped solve problems. New materials are constantly being invented and made into products that could be available in the future.	Students use a new material to design solutions to solve a real life problem. Students engage in an argument for the merits of their design.	Students observe the pattern that different materials share similar properties. Some materials have properties that cause them to be better suited to a purpose. They begin to explore how the structure of a designed object relates to its function .
Mystery 5 Could you build a house out of paper?	2-PS1-1 2-PS1-3 K-2-ETS1-2 K-2-ETS1-3	Materials, Properties, & Engineering	build with because you can combine many small pieces and make a bigger structure. But those aren't the only materials you can use to build! Paper doesn't seem like it has the right properties for buildingit's flexible and isn't strong. Surprisingly, you can change the properties of paper to make it stronger and a better building material.	Students design a solution to building a tall tower and a strong tower out of paper. They change the properties of paper by folding, bending and cutting paper Students model the building process by assembling small pieces in order to build an object.	Students consider that matter , in this case paper, can be broken into smaller pieces or change shapes. Students consider the cause and effect relationship between a material's properties and its uses.

Work of Water Earth's Surface Processes Grade 2 Mystery Science & NGSS Alignment - Earth Sciences (ES)

Profound Perspective: This unit helps students develop the idea that water is a powerful force that reshapes the earth's surface. Students see that water isn't just something we drink. It carries sand to create beaches, carves out canyons and valleys and, as ice, scrapes entire areas flat.

Grade 2 Earth Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 1 If you floated down a river, where would you end up?	2-ESS2-2 2-ESS2-3	Mapping, Earth's Surface, & Landforms	Rivers are bodies of water that are moving! When we look at a map of the earth's surface, we see that big rivers empty into the ocean. Earth's surface looks flat on a map, but we know that it is actually <i>quite</i> hilly. If we looked at a map with texture we'd see that rivers begin at points of high land, flow to points of low land and then into the ocean. DCIs: ESS2.B, ESS2.C	Students develop a model of the earth's surface and carry out an investigation to discover how rivers flow. They construct an explanation about where on the earth's surface rivers start and end.	Students identify patterns about where rivers start and end on earth's surface.
Mystery 2 Why is there sand at the beach?	2-ESS1-1 2-ESS2-1 2-ESS2-2	Erosion, Earth's Surface, & Landforms	In the last Mystery, we explored how rivers flow from high points of the earth's surface to low points and into the ocean. Oceans are usually next to sandy beaches - but how did all of that sand get there? As the rivers flow toward the ocean, rocks collide into one another causing them to break into smaller pieces. By the time those rocks reach the end of the river, they are <i>tiny</i> rocks - or sand! DCIs: ESS1.C, Foundational for ESS2.A, ESS2.B	Students conduct an investigation by modeling how rocks tumble through a river and break. Students construct an explanation for why there is sand at the beach.	Students reason about the cause and effect of rocks tumbling in a river (cause) and turning into sand (effect). Students begin to explore that changes to the earth's surface can happen slowly through the process of erosion.
Mystery 3 What's strong enough to make a canyon?	2-ESS1-1 2-ESS2-1 2-ESS2-2	Erosion, Earth's Surface, & Landforms	Water is incredibly powerful - even powerful enough to move the earth's surface! Heavy rains wash away dirt and rocks, creating canyons - this process is called erosion. Most canyons have rivers flowing from them, and as time passes the water continues to carry away dirt, rocks, and sand. Because of this, canyons continue to grow deeper and wider over time. DCIs: ESS1.C, ESS2.A, ESS2.B, ESS2.C	Students conduct an investigation by modeling what happens to land when it rains over and over. Students construct an explanation for how the water changed the land.	Students consider the cause and effect of how heavy rains (cause) create canyons on earth's surface (effect). Students begin to explore that changes to the earth's surface can happen slowly through the process of erosion.

Work of Water Earth's Surface Processes Grade 2 Mystery Science & NGSS Alignment - Earth Sciences (ES)

Grade 2 Earth Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 4} How can you stop a landslide?	2-ESS1-1 2-ESS2-1 K-2-ETS1-1 K-2-ETS1-2 K-2-ETS1-3	Erosion & Engineering	down a hill - is more likely to happen after a wildfire! The fire burns the plants, which soak up rainwater and stabilize the soil with their roots. After a heavy rain, the water loosens the soil and washes the soil away, causing a landslide. Landslides pose many dangers for people!	solutions to stabilize soil and prevent landslides. Students compare their solutions and engage	Students apply the concept that changes to earth's surface can happen rapidly during a landslide. Students mimic natural structures and their functions to create a design solution that lessens the impact of landslides.

Mystery Science Grade 3 - Pacing Guide

Mystery Science recommends teaching the mysteries within each unit in the order they are presented. The units themselves can be taught in any order. The core Mystery (exploration & activity) are designed to take an hour per week, with 2 hours of Optional Extras.

	Animals Through Time (8-16 weeks)	Power of Flowers (4-8 weeks)	Stormy Skies (4-8 weeks)	Invisible Forces (5-10 weeks)
Week 1	Mystery 1: Where can you find whales in a desert? (3-LS4-1 and 3-LS4-4) *Revision Coming Spring 2019	Mystery 1: Why do plants grow flowers? (3-LS1-1)	Mystery 1: Where do clouds come from? (Foundational 3-ESS2-1)	Mystery 1: How could you win a tug-of-war against a bunch of adults? (<i>3-PS2-1</i>)
Week 2	Mystery 2: How do we know what dinosaurs looked like? (3-LS4-1) *Revision Coming Spring 2019	Mystery 2: Why do plants give us fruit? (3-LS1-1)	Mystery 2: How can we predict when it's going to storm? (3-ESS2-1)	Mystery 2: What makes bridges so strong? (3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3, Foundational 3-PS2-1)
Week 3	Mystery 3: Can you outrun a dinosaur? (3-LS4-1) *Revision Coming Spring 2019	Mystery 3: Why are some apples red and some green? (3-LS3-1)	Mystery 3: Why are some places always hot? (3-ESS2-2)	Mystery 3: How can you go faster down a slide? (3-PS2-1 and 3-PS2-2)
Week 4	Mystery 4: What kinds of animals might there be in the future? (3-LS3-1 and 3-LS4-2)	Mystery 4: How could you make the biggest fruit in the world? (3-LS3-1)	Mystery 4: How can you keep a house from blowing away in a windstorm? (3-ESS3-1, 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)	Mystery 4: What can magnets do? (3-PS2-3 and 3-PS2-4)
Week 5	Mystery 5: Can selection happen without people? (3-LS3-1, 3-LS4-2, 3-LS4-3, 3-LS4-4)			Mystery 5: How could you unlock a door using a magnet? (<i>3-PS2-3, 3-PS2-4,</i> <i>3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3</i>)
Week 6	Mystery 6: Why do dogs wag their tails? (3-LS2-1)			
Week 7	Mystery 7: What's the best way to get rid of mosquitos? (3-LS4-3, 3-LS4-4, 3-5-ETS1-2)			
Week 8	Mystery 8: How long can people (and animals) survive in outer space?(<i>3-LS3-2</i>)			

Have extra time? "Optional Extras" are extensions to each Mystery. We recommend you use them during your unit or to extend the length of each unit. They include an informational text reading that builds on the Mystery's topic, assessments, and suggestions for supplemental activities.

More Science each week	Longer Science units	Cross Curricular Integration
Use items from the Optional Extras to extend each Mystery if you have more time.	Add a week after each Mystery to teach items from the Optional Extras.	If you want to extend the Mystery but don't have extra time, use Optional Extras during literacy time.

Animals Through Time Habitats, Heredity, & Change Over Time Grade 3 Mystery Science & NGSS Alignment - Life Sciences (LS)

Profound Perspective: In this unit students will develop an appreciation for how animals and the places they live (their habitats) are not constant—they have changed over time. Fossils give us a window to the animals and habitats of the past. Selective breeding shows us not only how some animals of the past became domesticated, but allows us to imagine how they might look in the future.

Grade 3 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 1 Where can you find whales in the desert?	3-LS4-1 3-LS4-3	Habitats & Environmental Change	Fossils provide evidence of the types of organisms that lived long ago and also about the characteristics of their habitats. They help tell the story of how the environment, and the things that live in it, have changed over time. As the environment changes, some organisms survive, some adapt, and some die out. DCIs: LS2.C, LS4.A, LS4.C, LS4.D	Students analyze and interpret data from fossil records to determine how the environment they were found in has changed over time. They use this evidence to engage in an argument for which environment an organism survived in based on its characteristics.	Students reason about the cause and effect relationship between environment and the type of organism that can survive there. They observe that organisms have body parts (structure) that helps them survive in their habitat (function). Students also consider the rate of stability and change of an environment.
Mystery 2 How do we know what dinosaurs looked like?	3-LS4-1	Structure & Adaptations, Fossil Evidence, Classification	Fossils are clues to the past! They can tell us what an organism looked like on the outside, the habitat it lived in, and even the food it ate. Dinosaur skeletons helped us learn that dinosaurs looked a lot like lizards do today. Fossils of their teeth helped us determine if they were meat or plant-eaters. DCIs: LS4.A	Students analyze and interpret data from fossil records to determine what type of food an organism ate/eats. They use the fossil evidence to engage in an argument for why they chose each food source.	Students consider that fossilized evidence of organism's teeth (structure) can determine which type of food they ate (function) and the type of environment they inhabited.
^{Mystery 3} Can you outrun a dinosaur?	3-LS4-1	Fossil Evidence, Behavior	Dinosaur footprints are a type of fossil, meaning they can help us learn about the past. When footprints are farther apart, an organism is moving faster. When footprints are closer together, the organism is moving slower. Some dinosaurs are faster than others and we can use their footprints to figure out how their speeds were different. DCIs: LS4.A	Students carry out an investigation by comparing the stride length of student runners to the stride length of a comparable sized dinosaur, CeeLo. They use mathematics and computational thinking to record stride length, graph the value and determine the speed at which the student was running.	Students explore quantity by measuring stride length. They observe the relationship between stride length and speed.

Animals Through Time Habitats, Heredity, & Change Over Time Grade 3 Mystery Science & NGSS Alignment - Life Sciences (LS)

Grade 3 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 4 What kinds of animals might there be in the future?	3-LS3-1 3-LS4-2	Heredity, Variation, & Selection	People want their pets to look a certain waythey want them to have desirable traits. Since many characteristics of organisms are inherited from their parents, people can change organisms to have the traits they want! This is called selection. If people want an animal to have a specific trait -like, a dog to be small - they will breed two of the smallest dogs they can over and over again! DCIs: LS3.A, LS3.B	Students analyze the traits of parent dogs to determine which puppy they could have. They construct explanations about which traits the puppy gets from each parent.	Students recognize patterns in traits between parents and offspring.
^{Mystery 5} Can selection happen without people?	3-LS3-1 3-LS4-2 3-LS4-3 3-LS4-4**	Heredity, Variation, & Selection	It isn't just people that can change the traits of animals over timenature can too! When the environment changes, like the introduction of a new predator, some organisms survive well and reproduce, some have traits that help them survive less well, and some cannot survive at all. Over time, most offspring will be born with the trait that helps them survive well. This is because offspring inherit their traits from their parentsand the ones that survive well and reproducing! **End of Unit Project in Optional Extras DCIs: LS2.C, LS3.A, LS3.B, LS4.B, LS4.C, LS4.C	Students carry out an investigation by using a model to simulate the introduction of a predator species on Lizard Island. Students simulate multiple generations of lizards, analyzing and interpreting the data after each one. They use this data to engage in argument from evidence to support their claim about how the offspring change from the original lizards.	Students recognize the cause and effect relationship between a change in the environment and the survival of organisms that inhabit it. They recognize environments as a system , made up of interdependent parts that function as a whole. They can be stable and change over time at different rates of speed.
^{Mystery 6} Why do dogs wag their tails?	3-LS2-1	Animal Groups & Survival	Dogs, descendants of wolves, are different than other pets because of how they interact with us. Wolves live in groups, work together, and communicate with one another. Being in a group helps wolves survive because they are able to catch more prey in a pack than when they are alone. There are other types of animals that also live in groups to help them survive. Being part of a group can help animals defend themselves from predators, obtain food, and cope with environmental changes. Animals living alone have a much harder time surviving.	Students carefully observe animals that live in groups in order to obtain, evaluate, and communicate information about animal social behavior. Using the evidence from their observations, students engage in an argument to support their claim that animals form groups to help them survive.	Students recognize the cause and effect relationship between animals living in a group and the members of that group surviving.

Animals Through Time Habitats, Heredity, & Change Over Time Grade 3 Mystery Science & NGSS Alignment - Life Sciences (LS)

Grade 3 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 7} What's the best way to get rid of mosquitoes?	3-LS4-3 3-LS4-4 3-5-ETS1-2	Habitat Change & Engineering	weather to survive. When the environment changes with increased rainfall, there will be more mosquitoes because they can survive and reproduce in greater numbers. Scientists and engineers can use this information to design solutions that help reduce the population of mosquitoes in certain areas. When there are fewer mosquitoes, then	Students obtain and evaluate information from different people who live in Pondville, a town with a severe mosquito problem. Then, using this information, students design solutions that will reduce the number of mosquitoes that live in Pondville.	Students recognize the cause and effect relationship between a change in the environment and the survival of organisms that live there. They recognize environments as a system , made up of interdependent parts that function as a whole.
Mystery 8 How long can people (and animals) survive in outer space?	3-LS3-2		an astronaut. Astronauts wear space suits to protect themselves from the extreme temperatures of outer space. But how does the low gravity of space affect our bodies? After a year of living in space, the low gravity of the environment causes a decrease in our arm strength, a reduction in our ability to balance, and even an increase in our height!	Students measure their own physical traits (arm strength, balance, and height) and then make predictions about how these traits would change after living in outer space for a year. Students use this information to construct an explanation for how the environment can influence and change physical traits.	Students recognize the cause and effect relationship between the environment and its influence on physical traits (physical characteristics).

Power of Flowers Life Cycle, Traits, & Heredity Grade 3 Mystery Science & NGSS Alignment - Life Sciences (LS)

Profound Perspective: This unit develops the idea that by studying how plants reproduce and pass on their traits, we human beings have figured out how to make food plants even more useful to us. Students first discover how plants reproduce by exploring the process of pollination and fruiting. Then students are introduced to the process of plant domestication (selection of traits based on inheritance and variation).

Grade 3 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 1} Why do plants grow flowers?	3-LS1-1	Flowering & Reproducti on	All plants grow from a seed, which is a baby plant. Just like animals, <i>some</i> plantsall flowering plantsneed two parent plants to create a seed. Flowering plants make seeds through a process called pollination. Pollination happens when pollen from one flower gets transferred to a special part of another flower - the stigma. Flowers make seeds! These plants have a unique life cycle that start with pollination. DCIs: Foundational LS1.B	Students develop a model of a flower and bee to simulate pollination. With a partner, they carry out an investigation to determine how bees fly between flowers and cause pollination. Students an alyze their data and construct an explanation for if their flower will produce seeds or not.	Students explore the pattern of similarities in life cycles among organisms. Students observe that a plant's stigma (structure) is sticky to 'catch' pollen (function).
^{Mystery 2} Why do plants give us fruit?	3-LS1-1	Reproducti on	We learned in the last Mystery that pollen travels to the stigma of a flower to make a seed. But it isn't that simple - the pollen travels down the stigma, and into the flower's ovary. Then a seed is made! Some plants grow fruit next. Fruit, a yummy 'container' for seeds, is eaten by animals! They swallow the seeds and excrete them away from the parent plant. This helps the seeds spread to new places and grow new plants. A lot of vegetables have seeds, but to plant scientists they are actually fruits!	Students carry out an investigation to determine if a food is a science fruit or vegetable. They cut open each food to determine if there are seeds. Students analyze this data to determine if the food is a fruit or vegetable.	Students use patterns to sort food as a science fruit or a science vegetable. Students learn that fruit (structure) contains seeds and helps them spread (function).
Mystery 3 Why are some apples red and some green?	3-LS3-1	Inheritance, Traits, & Selection	Apples, like all living things, inherit their characteristics from their parents. Sweet apples grow from the seeds of sweet apples, and sour apples grow from the seeds of sour apples. While offspring have similar traits as their parents and siblings, they are not <i>exactly</i> the same. There are over 2,000 varieties of apples, each with unique traits. Farmers choose people's favorites, plant that type of seed over and over, and grow more of them. This is called selection. DCIs: LS3.A, LS3.B	Students carry out an investigation to determine the sweetness of different apple varieties.	Students identify the similarities and differences shared between offspring and their parents, or among siblings as a pattern .

(continued)

Power of Flowers Life Cycle, Traits, & Heredity Grade 3 Mystery Science & NGSS Alignment - Life Sciences (LS)

Grade 3 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 4 How could you make the biggest fruit in the world?	3-LS3-1	Fruiting, Reproduction	inherit their traits from their parents which is why they are similar but not identical. Selection is when a desired trait is chosen to reproduce. It is used to change any trait of a plant. Plant-growers watch closely for changes in traits so that they can create new varieties of plants. Many fruits and vegetables we eat today were created through selection.	communicate information by	Students recognize similarities and differences among the traits of different plants as a pattern .

Stormy Skies Weather, Climate, & Water Cycle Grade 3 Mystery Science & NGSS Alignment - Earth Sciences (ES)

<u>Profound Perspective</u>: This unit develops the idea that by paying careful attention to clouds, wind, and other weather clues around us, we can predict the daily weather and make sense of why places on earth look and feel the way they do.

Grade 3 Earth Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 1 Where do clouds come from?	Foundational for 3-ESS2-1	Water Cycle, Phases of Matter	Clouds may look like white, fluffy, cotton, but they are actually made of water! When liquid water is heated it turns into gas water. This process is called evaporation. Some liquid water from Earth's surface (like oceans and lakes) is heated and turns into invisible water gas. It rises up into the atmosphere and becomes trapped! These trapped water droplets make clouds. DCIs: <i>Foundational</i> ESS2.D	Students carry out an investigation by using a model to observe evaporation. They engage in argument from evidence using observations from their investigation to explain what clouds are.	Students consider the cause and effect relationship between heated liquid water and the evaporation of gas water that forms into clouds.
Mystery 2 How can we predict when it's going to storm?	3-ESS2-1	Local Weather Patterns, Weather Prediction	There are many different types of clouds! Knowing what types of clouds bring stormy weather (and the wind's direction) can help you prepare for a rainstorm. Understanding this patterns help scientists, and you, predict what kind of weather might happen next! DCIs: ESS2.D	Students obtain and communicate information about different types of clouds by creating a Storm Spotter's Guide. They engage in argument from evidence by using this information to analyze multiple scenarios and determine if a storm will occur and why.	Students explore patterns of changing clouds as a way to predict weather.
Mystery 3 Why are some places always hot?	3-ESS2-2	Climate, Geography, & Global Weather Patterns	Weather conditions that are predictable and occur over long periods of time are called climates. There are 5 climatestropical, polar, temperate, mild, and desert. Each climate occurs in a specific part of the world, depending on how much sunlight and rain it gets throughout the year. DCIs: ESS2.D	Students obtain and evaluate information about multiple location's weather. They communicate the information by color coding a map based on climate. Students analyze and interpret the data to determine climate patterns across the world.	Students recognize climate across the world as an observable pattern .
Mystery 4 How can you keep a house from blowing away in a windstorm?	3-ESS3-1 3-5-ETS1-1 3-5-ETS1-2 3-5-ETS1-3	Natural Hazards & Engineering	Strong winds can cause different types of natural hazards such as hurricanes, dust storms, and tornadoes. Strong winds can cause a lot of problemsthey blow down all kinds of things! Engineers design solutions for the damage strong winds can cause. They identify problems and brainstorm a lot of different ideas until they find a solution. DCIs: ESS3.B, ETS1.A, ETS1.B, ETS1.C	Students define problems that strong winds cause. They develop and use a model of a home in order to design a solution that keeps the roof attached to the home and stops the home from blowing away in the wind. They test and improve their prototype.	Students identify the cause and effect relationship between strong winds and the problems they cause.

Invisible Forces Forces & Motion, Magnetism Grade 3 Mystery Science & NGSS Alignment - Physical Sciences (PS)

Profound Perspective: This introductory forces unit will give students a new understanding of the invisible pushes and pulls that operate in the world around them. They will realize that understanding forces will let them do surprising things — from building a sturdy bridge from paper to using the pull of a rubber band to send a cardboard "hopper" flying. What students learn in this unit will connect to the world around them, leading them to think about such things as the force of friction as they slide down a playground slide or the the invisible force that makes magnets cling to the refrigerator. Hands-on activities focus on engineering, investigation, and discovery.

Grade 3 Physical Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 1 How could you win a tug-of-war against a bunch of adults?	3-PS2-1	Forces	Every action is either a push or a pull, or what we call a 'force'. Forces each have a strength and a direction. When objects are in contact, they exert a force on each other. When a force is greater than the opposite force, it causes the object to move in its direction. DCIs: PS2.A, PS2.B	Students build a Hopper Popper to carry out an investigation about force and motion. They construct an explanation for which direction the forces act on the object, causing it to hop.	Students recognize the cause and effect relationship between the forces acting on an object and the direction of its motion.
Mystery 2 What makes bridges so strong?	3-5-ETS1-1 3-5-ETS1-2 3-5-ETS1-3 Foundational for 3-PS2-1	Balance of Forces, Engineering	Engineers build bridges to join two pieces of land that are split by a body of water. Building a bridge is no easy task! Engineers had to try lots of different solutions, most that didn't work, and learn from them. Possible solutions to a problem can be limited by available resources and materialswe call these constraints. All engineers communicate with their peers, test their prototypes, learn from their failures, and improve their designs. Being an engineer is exciting and full of learning! DCIs: ETS1.A, ETS1.B, ETS1.C, Foundational PS2.A	Students define a problem - designing a bridge that will hold the most weight - and its constraints, it can only be made of paper. They collaborate with peers to design multiple solutions . They carry out investigations to test each of their prototypes, determine how to improve their design.	Students explore the relationship between the structure and function of different bridge designs.
^{Mystery 3} How can you go faster down a slide?	3-PS2-1 3-PS2-2	Balance of Forces, Friction	A special type of 'push' force is called friction. This force occurs when two objects are in contact and push against each other. When an object has less friction, it moves easier. If an object has more friction, it is moves slower. Objects with smooth surfaces have less friction, and objects with rougher surfaces have more friction. DCIs: PS2.A, PS2.B	Students use a model of a slide to carry out an investigation. They ask questions about different materials and weights and test their ideas to explore which combinations move the fastest down the slide. Students then complete a fair test to determine which material has the least friction. They engage in argument from evidence to share their findings.	Students consider the cause and effect relationship between a material's surface and the amount of friction it has.

Invisible Forces Forces & Motion, Magnetism Grade 3 Mystery Science & NGSS Alignment - Physical Sciences (PS)

Grade 3 Physical Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 4} What can magnets do?	3-PS2-3 3-PS2-4	Magnets, Forces	Magnetism is another special kind of force. Magnets can pull on things without actually touching themthe force can even go right through a solid object. But not all objects are affected by magnetism, only objects that contain iron. Magnets have a lot of interesting properties. The closer a magnet is to a magnetic object, the stronger its force will be Also, magnets have two sides. When two magnets line up at the same side, they will push away from each other. When they are lined up at different sides, they will pull toward each other. DCIs: PS2.B	students ask questions about magnets and develop and carry out investigations to observe the different properties of them.	Students consider the cause and effect relationship between this distance of a magnet and the strength of the force. Students consider the cause and effect relationship between which direction two magnets are facing and if they will push or pull on one another.
^{Mystery 5} How can you unlock a door using a magnet?	3-PS2-3 3-PS2-4 3-5-ETS1-1 3-5-ETS1-2 3-5-ETS1-3	Magnets & Engineering	We've learned that magnets have a lot of interesting properties! One of them, is that magnets can push and pull on each other. In fact, they can do this even with space or another object between them! Since magnets have many useful properties, they can be used to design solutions to a variety of problems. DCIs: PS2.B, ETS1.A, ETS1.B, ETS1.C	Students design a solution for a magnetic lock by developing a model .	Students consider the cause and effect relationship between two magnets as a way to so design solutions using the engineering process.

Mystery Science Grade 4 - Pacing Guide

Mystery Science recommends teaching the mysteries within each unit in the order they are presented. The units themselves can be taught in any order. The core Mystery (exploration & activity) are designed to take an hour per week with 2 hours of Optional Extras.

	Birth of Rocks (4-8 weeks)	Energizing Everything (6-12 weeks)	Human Machine (4-8 weeks)	Waves of Sound (3-6 weeks)
Week 1	Mystery 1: Could a volcano pop up where you live? (4-ESS1-1 and 4-ESS2-2)	Mystery 1: How can a car run without gas? (4-PS3-1 and 4-PS3-4) *Revision Coming Spring 2019	Mystery 1: Why do your biceps bulge? (4-LS1-1)	Mystery 1: How far can a whisper travel? (4-PS4-1 and 4-PS4-3)
Week 2	Mystery 2: Why do some volcanoes explode? (4-ESS1-1)	Mystery 2: What makes roller coasters go so fast? (4-PS3-1 and 4-PS3-3)	Mystery 2: What do people who are blind see? (4-LS1-1, 4-LS1-2 and 4-PS4-2)	Mystery 2: What would happen if you screamed in outer space? (4-PS4-1)
Week 3	Mystery 3: Will a mountain last forever? (4-ESS1-1 and 4-ESS2-1)	Mystery 3: Why is the first hill of a roller coaster always the highest?(4-PS3-3)	Mystery 3: How can some animals see in the dark? (4-LS1-1, 4-LS1-2 and 4-PS4-2)	Mystery 3: Why are some sounds high and some sounds low? (4-PS4-1)
Week 4	Mystery 4: How could you survive a landslide? (4-ESS2-1 and 4-ESS3-2)	Mystery 4: Could you knock down a building using only dominoes? (4-PS3-4 and 3-5-ETS1-1)	Mystery 4: How does your brain control your body? (<i>4-LS1-1 and 4-LS1-2</i>)	
Week 5		Mystery 5: Can you build a chain reaction machine? (4-PS3-4, 3-5-ETS1-1, 3-5-ETS1-2 and 3-5-ETS1-3)		
Week 6		Mystery 6: What if there were no electricity? (4-PS3-2 and 4-PS3-4)		
Week 7		Mystery 7: How long did it take to travel across the country before cars and planes? (4-PS3-2 and 4-PS3-4)		
Week 8		Mystery 8: Where does energy come from? (<i>4-ESS3-1</i>)		

Have extra time? "Optional Extras" are extensions to each Mystery. We recommend you use them during your 6 week unit or to extend the length of each unit. They include an informational text reading that builds on the Mystery's topic, assessments, and suggestions for supplemental activities

More Science each week	Longer Science units	Cross Curricular Integration	
Use items from the Optional Extras to extend each Mystery if you have more time.	Add a week after each Mystery to teach items from the Optional Extras.	If you want to extend the Mystery but don't have extra time, use Optional Extras during literacy time.	

Birth of Rocks Rock Cycle, Erosion, & Natural Hazards Grade 4 Mystery Science & NGSS Alignment - Earth & Space Sciences (ESS)

Profound Perspective: Every rock has a story that it tells, if you know how to "read" it, i.e. by identifying *patterns* and knowing the *causes* of how the various rocks are formed. Take any place that seems mundane to people now--like a parking lot--and a rock will tell you something extraordinary about what that place *used* to be like: it may well have been the site of a volcano. You will soon discover that nowhere on earth has been mundane forever. One of the most seemingly dull things you can imagine--a simple rock--is actually the relic of something astounding.

Grade 4 Earth Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 1 Could a volcano pop up where you live?	4-ESS1-1 4-ESS2-2	Volcanoes, Rock Cycle & Earth's Surface	Rocks begin as lavavolcanic rocks are lava that has been frozen in time. Volcanoes don't just existthey <i>form</i> , or 'pop up'. There is a pattern to where most volcanoes exist today on the earth. And yet dead volcanoesand volcanic rock they eruptedcan be found in <i>lots</i> of places. (So the pattern today isn't necessarily what it used to be.) You can look for volcanic rocks near you. DCIs: ESS1.C, ESS2.B	trom recent volcanic eruptions. They use their findings as evidence for an argument that volcanoes are (or are not) likely to erupt in their backvard	Students identify patterns about the location of the world's volcanoes and use these patterns as evidence to support an argument about why a volcano may or may not erupt in their backyard.
^{Mystery 2} Why do volcanoes explode?	4-ESS1-1	Volcanoes, Lava & Rock Cycle	Volcanic rocks are lava frozen in time. There are two primary types of lava, each of whose thickness explains two major differences in a volcano's shape & style of eruption. These two lavas also account for two commonly observed volcanic rocks that you might find. DCIs: <i>Foundational for</i> ESS2.B; <i>Extends</i> ESS2.B	Student conduct an investigation to construct an explanation for why some volcanoes explode and why some do not. Students model thick and thin lava to conduct their investigations.	Students reason about the cause and effect of the type of lava (cause) and the nature of the eruption (effect) as well as the shape of the volcano (effect).
^{Mystery 3} Will a mountain last forever?	4-ESS1-1 4-ESS2-1	& Destructive Forces	Rock does not stay as massive monoliths of volcanoesit tends to get broken into smaller pieces ("sediments") over time due to natural forces ("weathering"), and tumble downhill. You can look for evidence of this where you live.	Students conduct an investigation by modeling how rocks erode over time. Students construct an explanation for why rocks erode.	Students consider the cause and effect of ice and root wedging on rock as it is broken down into small pieces.
Mystery 4 How could you survive a landslide?	4-ESS2-1 4-ESS3-2	Erosion, Natural Hazards & Engineering	The weathering process is not benign; it creates some of the worst natural hazards, including rock falls, landslides, and debris flows. If we are to be safe from these hazards, we have to design solutions to protect us. DCIs: ESS3.B	protect their "homes" from rock	Engineering a solution to landslide hazards depends on scientific knowledge about the causes of landslides.

Note: Mysteries that address DCI ESS2.E are in development.

Human Machine Body, Senses, & the Brain Grade 4 Mystery Science & NGSS Alignment - Life Science (LS)

Profound Perspective: Your body is like a machine or robot. It has parts for moving around, sensors, a built-in computer (and it all even runs on power--but that's a topic for a later time).

Grade 4 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 1} Why do your biceps bulge?	4-LS1-1	Muscles & Skeleton	Like a machine or robot, the body has parts, or structures, for moving around (e.g. the limbs). In order to move (one of the body's functions), the body needs at least two things: muscles and bones. The contraction of your muscles pulls on tendons, which in turn pull on the bones, causing you to move. Your external parts (such as appendages) are controlled by your brain like a marionette puppet (a topic we explore in Mystery 4). DCIs: LS1.A	Students build a model of a finger that they then use to construct an explanation for how fingers move.	Students consider how human motion is made possible by a system of muscles, tendons and bones. Students consider the cause and effect relationship between tendons and the muscles and bones that they move.
^{Mystery 2} What do people who are blind see?	4-LS1-1 4-LS1-2 4-PS4-2	Eyes & Vision	Continuing the analogy of the body as a machine or robot, we now consider its "sensors"the sensory organs, in this lesson focusing specifically on the eyes. Students discover the basics of how their eyes work, and figure out some of the causes of vision problems. DCIs: LS1.A; <i>Foundational for</i> LS1.D, PS4.B	Students build a model of a eyeball that they then use to construct an explanation of why some people have blurry vision.	Students think about how the eye works as a system of different parts that interact to facilitate vision. Students consider how light interacts with the system to determine what images we see (cause and effect .)
Mystery 3 How can some animals see in the dark?	4-LS1-1 4-LS1-2 4-PS4-2	How Eyes Work	Students delve further into the workings of the eye, exploring the function of their iris and pupil. DCIs: LS1.A; <i>Extends</i> LS1.D, PS4.B	Students conduct an investigation to see how pupils change in response to light. Students build a model of an eye (extending the model they built in Mystery 3) to explain how changes in pupil size changes the image that appears on the retina.	Students continue to think about how the eye works as a system and how changes to each part impact the system as a whole. Students also reason about the effect of changes in pupil size (cause and effect).
^{Mystery 4} How does your brain control your body?	4-LS1-1 4-LS1-2	Brain & Nerves	Continuing the analogy of the body as a machine or robot, we finally consider the body's 'build-in computer' or central processor: the brain, and its accompanying nerves. Students explore the brain's role in receiving information from the senses, processing that information, and controlling the muscles to enable movement. DCIs: LS1.A, LS1.D	Students conduct investigations to explore how the brain processes information and responds to that information. Students analyze and interpret data from the investigations to determine how fast their reflexes are.	Students identify patterns based on how their brains process information.

Energizing Everything *Energy & Motion* Grade 4 Mystery Science & NGSS Alignment - Physical Science (PS)

<u>Profound Perspective</u>: "Energy" is a real thing--not just some vague term--almost like a power or substance that causes objects to move, speed up, or slow down. This power or substance can be transferred between objects when they collide. Thinking about the world in terms of energy helps us to make sense of how and why things speed up and slow down.

Grade 4 Physical Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 1} How can a car run without gas?	4-PS3-1 4-PS3-4	Stored Energy, Motion	When something is moving, it has energy. Moving things get their energy from stored energy, and energy can be <i>stored</i> in different ways (such as gasoline, batteries, or even food). DCIs: PS3.B, Foundational for PS3.A	Students build rubber-band racers and use them to carry out an investigation to examine the relationship between stored energy and motion. Students analyze and interpret data from their races. As engineers, students modify their racers to improve how well they move.	Students explore how energy can be stored and released using a rubber band. The amount of energy that is put into the system is related to the amount of energy that is released.
^{Mystery 2} What makes roller coasters go so fast?	4-PS3-1 4-PS3-3	Stored Energy, Speed, Collisions	Giving something "height" (putting it up high) is another way to store energy in something. When the object falls or drops, that stored energy is released: this explains why roller coasters work, but also bicycling downhill, skiing, skydiving, even meteors. The higher up you place an object, the more energy you store in it, and the faster it goes when released or dropped. DCIs: PS3.A	Students build a model of a roller coaster and carry out an investigation using marbles. Students analyze and interpret data from the model to explain the connection between height, energy and motion.	Students consider how energy is stored and released in a system as they experiment with their marble roller coasters.
Mystery 3 Why is the first hill of a roller coaster always the highest?	4-PS3-3	Energy & Collisions	Something that's falling only has as much energy as was stored in it in the first place. This is why the first hill of a rollercoaster is always the highest. When an object collides with another object, some of its energy is transferred. DCIs: PS3.B	Students conduct an investigation using a model roller coaster to determine how energy can be stored in the hills of the coaster and how that energy is released to make the marbles go different distances. Students analyze and interpret data from the model to explain how the heights of different hills give marbles the energy to roll.	Students consider how energy is stored and released in a system as they experiment with their marble roller coasters.

Energizing Everything *Energy & Motion* Grade 4 Mystery Science & NGSS Alignment - Physical Science (PS)

Grade 4 Physical Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 4 Could you knock down a building using only dominoes?	4-PS3-4 3-5-ETS1-1	Energy & Engineering	We can invent devices that convert stored energy into movement, and transfer that energy to various other objects along a pathway. DCIs: PS3.A, PS3.C, ETS1.A	Students begin to design a chain reaction machine. They start by figuring out how to connect two components of the chain reaction: the lever and the slide. This is the basis of the machine they will further develop in Mystery 5.	Students consider the ways in which energy can be stored and released as they trace the path of energy through a chain reaction.
Mystery 5 Can you build a chain reaction machine? (continuation of Mystery 4)	4-PS3-4 3-5-ETS1-1 3-5-ETS1-2 3-5-ETS1-3	Energy & Engineering	Engineers are people who design or invent solutions to problems by using knowledge of science. All engineers think about what their goal is, come up with multiple ideas, test those ideas out, and repeatedly fail until they figure out what works. DCIs: PS3.A, PS3.C, ETS1.A	Students design a chain reaction machine that displays a message at the end. The chain reaction machines use multiple components that transfer energy from one part to the next.	Students consider the ways in which energy can be stored and released as they trace the path of energy through a chain reaction.
Mystery 6 What if there were no electricity?	4-PS3-2 4-PS3-4	Electrical Energy	Electricitythe stuff from our outlets and batteriesis a form of energy that we use to produce <i>movement</i> , but also light, heat, and more. Just like the energy in a chain reaction machine, electricity moves along a path and so can be transferred from one place to another. We can use such knowledge about electrical energy to design solutions to problems (such as flashlights for seeing in the dark). DCIs: PS3.B, ETS1.A	Students design a flashlights using batteries, flights and tin foil. Students experiment with different ways of constructing their flashlights so that they turn on and off.	Electricity is a form of energy that can be stored (such as in batteries) and transferred via wires, where it is used to produce not only movement, but also light, heat, and more.
Mystery 7 How long did it take to travel across the country before cars and planes?	4-PS3-2 4-PS3-4	Heat, Engines, & Energy Transfer	The invention of the engine was a monumental step forward for human transportation; it used heat energy released from burning fuel to move people and goods over long distances much more safely, cheaply, and quickly. Engines are chain reaction machinesheat is transferred through a device to create movement! DCIs: PS3.B, PS3.D	Students build a paper spinner and conduct an investigation to explain how heat makes things move.	Heat is a form of energy that can be transferred to create movement.

Energizing Everything *Energy & Motion* Grade 4 Mystery Science & NGSS Alignment - Physical Science (PS)

Grade 4 Physical Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 8 Where does energy come from?	4-ESS3-1	Energy Resources & Environment al Impacts	gases can be burned to release energy. Unfortunately, burnable sources of energy release smoke and cause air pollution. Many scientists are exploring alternative natural sources of energy such as solar, wind, and water. These patural sources don't require burning to release energy.	Students evaluate the advantages and disadvantages of alternative energy sources to power a town. They obtain and evaluate information about the needs of each source of energy and analyze and interpret data about the town's resources.	Natural resources such as coal, the sun, wind, and wood can be used for energy . Using these resources (cause) can damage the environment (effect) .

Waves of Sound Sound, Waves, & Communication Grade 4 Mystery Science & NGSS Alignment - Physical Science (PS)

Profound Perspective: Even though "sound" might seem like a short-lived phenomenon without any real form, it is very much a physical thing, a wave of vibrations traveling through the air. Sound has properties: it takes time to travel, it can be transmitted over a string, manipulated to become high or low, turned into music, even captured and frozen in time. Equipped with this understanding, students can begin to make sense of how sound and music work.

Grade 4 Physical Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 1} How far can a whisper travel?	4-PS4-1 4-PS4-3	Sound & Vibrations	Sounds aren't something we can see or touch, and so it's easy to dismiss them as not fully real. But if you've experienced an echo before, then clearly there is something interesting and very real about soundwe can even feel and see that sound has something to do with vibrations. Students observe a relationship between sound and vibration, and through the activity, discover evidence that sound isn't merely related to vibrations, but perhaps, <i>is</i> a vibration. DCIs: <i>Foundational for</i> PS4.A	Students document their understanding of how vibrations travel using a model of their paper cup telephones. Students then design their own series of investigations to figure out how to make their telephone work better in different circumstances. Students construct an explanation of how the telephone works. Students extend the lesson by developing a way to send a message using a pattern of sounds.	Students identify patterns about the relationship between the tension of the string and the quality of the sound it produces. Students also investigate patterns in the how different materials affect the quality of the sound that is transmitted.
Mystery 2 What would happen if you screamed in outer space?	4-PS4-1	Sound & Vibrations	Sound can travel through lots of different materials: through water, through string it's possible to even <i>feel</i> the vibrations in the string, pinch the string, and stop the vibrations from reaching the other side. It would seem that sound is a vibration that must travel from one place to another. So does that mean sound is vibrating the air? (It is.) And what happens if there is no air? (There is no sound!) DCIs: PS4.A	Students conduct investigations with balloons to experience the vibrations caused by sound of their voices. Students construct an explanation that sound is a vibration. Students then develop a model to explain how sound travels through a medium and how it can cause distant objects to move.	Students consider the effect of vibrations on the movement of distant objects.
Mystery 3 Why are some sounds high and some sounds low?	4-PS4-1	Sound, Vibrations & Waves	Some sounds are very high-pitched, while others are low-pitched. For example, young people can even hear certain high-pitched sounds that adults can no longer hear. What makes one sound high and another low? By examining some musical instruments played in slow motion, we can begin to detect some differences in the vibrations. Special instruments enable us to visualize the resulting air vibrations, and reveal that sound vibrations travel as waves in the air. Students discover that the difference between high and low-pitched sounds has to do with the length of these waves ("wavelength"). DCIs: PS4.A	Students analyze and interpret data from oscilloscopes to determine how wavelengths differ between high and low pitch sounds. Students make claims and argue from evidence about which wavelength patterns were generated from different pitches. Students then use a rope to model waves created by different pitches and begin to explore the relationship between wavelength and frequency.	Students identify and analyze the oscilloscope patterns made by sounds with low and high pitches.

Note: Mysteries that address DCI PS4.C are in development.

Mystery Science Grade 5 - Pacing Guide

Mystery Science recommends teaching the mysteries within each unit in the order they are presented. The units themselves can be taught in any order. The core Mystery (exploration & activity) are designed to take an hour per week with 2 hours of Optional Extras.

	Spaceship Earth (8-16 weeks)	Web of Life (6-12 weeks)	Chemical Magic (5-10 weeks)	Watery Planet (4-8 weeks)
Week 1	Mystery 1: Why does the sun rise and set? (5-ESS1-2) *Revision Coming Spring 2019	Mystery 1: Why would a hawk move to New York City? (5-LS2-1)	Mystery 1: Are magic potions real? (<i>5-PS1-1, 5-PS1-2</i>)	Mystery 1: How much water is in the world? (<i>5-ESS2-2</i>)
Week 2	Mystery 2: Who set the first clock? (5-ESS1-2)	Mystery 2: What do plants eat? (5-LS1-1, 5-LS2-1)	Mystery 2: Could you transform something worthless into gold? (5-PS1-1, 5-PS1-2)	Mystery 2: When you turn on the faucet, where does the water come from? (5-ESS2-2 and 5-ESS3-1)
Week 3	Mystery 3: How can the sun tell you the season? (<i>5-ESS1-2</i>) Formerly Mystery 4, switched on 12/31/18	Mystery 3: Where do fallen leaves go? <i>(5-LS2-1)</i>	Mystery 3: What would happen if you drank a glass of acid? (5-PS1-3)	Mystery 3: Can we make it rain? <i>(5-ESS2-1)</i>
Week 4	Mystery 4: Why do the stars change with the seasons? (<i>5-ESS1-2</i>) Formerly Mystery 3, switched on 12/31/18	Mystery 4: Do worms really eat dirt? (5-LS2-1, 5-LS1-1)	Mystery 4: What do fireworks, rubber, and silly putty have in common? (<i>5-PS1-4</i>)	Mystery 4: How can you save a town from a hurricane? (5-ESS2-1, 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)
Week 5	Mystery 5: Why does the moon change shape? (<i>5-ESS1-2)</i>	Mystery 5: Why do you have to clean a fish tank but not a pond? <i>(5-LS2-1)</i>	Mystery 5: Why do some things explode? (5-PS1-1)	
Week 6	Mystery 6: What are the wandering stars? (5-ESS1-2)	Mystery 6: Why did the dinosaurs go extinct? (5-PS3-1)		
Week 7	Mystery 7: Why is gravity different on other planets? (<i>5-PS2-1</i>)			
Week 8	Mystery 8: Could there be life on other planets? (<i>5-ESS1-1)</i>			

Have extra time? "Optional Extras" are extensions to each Mystery. We recommend you use them during your unit or to extend the length of each unit. They include an informational text reading that builds on the Mystery's topic, assessments, and suggestions for supplemental activities.

More Science each week	Longer Science units	Cross Curricular Integration
Use items from the Optional Extras to extend each Mystery if you have more time.	Add a week after each Mystery to teach items from the Optional Extras.	If you want to extend the Mystery but don't have extra time, use Optional Extras during literacy time.

Spaceship Earth Sun, Moon, Stars & Planets Grade 5 Mystery Science & NGSS Alignment - Earth & Space Science (ESS)

Profound Perspective: This astronomy unit helps students develop a new perspective on the world they're standing on. They will be given evidence that the Earth beneath our feet is actually moving through space, both spinning on its axis, and traveling in a great orbit around the Sun. They will see how these movements account for the patterns we see in our sky (the paths of our Sun across the sky, the changing seasons, and the changing constellations). Accompanying us on this journey are the Moon and planets, which the students will observe have their own patterns of movement in the sky.

Grade 5 Space Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 1} Why does the Sun rise and set?	5-ESS1-2	Sun, Daily Patterns, Earth's Rotation	The Sun appears to move across the sky each day, creating an observable pattern. It rises in the morning, and sets in the evening. It is natural for us to assume that the Sun is moving—this is what we believed for most of human history. But to much surprise, scientists eventually figured out that this is not the case; it's actually the Earth that is spinning. There is no simple way to demonstrate this from the ground without using advanced knowledge of physics and math. But now that we've been to space and can film it, we have direct proof. DCIs: ESS1.B	Students carry out an investigation to explore the phenomena of the Sun appearing to move across the sky. They investigate using two models , one of the Sun rotating around the Earth and another of the Earth rotating around the Sun. Students create an argument using the evidence they gathered in the investigation to explain why the Sun rises and sets.	Students observe the pattern of the rising and setting Sun. In this Mystery, they notice the similar patterns between two different models. They recognize that the sun moving across the sky is a pattern that can be explained by either model. With additional data, students come to understand which model is accurate.
Mystery 2 Who set the first clock?	5-ESS1-2	Sun, Daily Patterns, Earth's Rotation	A long time ago, our ancestors divided the day into 24 hours. Clocks measure the Sun's apparent movement. But before clocks existed, the change in shadows helped us measure the Sun's movement. The sun's position causes the length and direction of an object's shadow. Since the Sun moves across the sky each day in a pattern, shadow clocks (sundials) can be used to tell the time of day. DCIs: ESS1.B	Students create a shadow clock, to observe how shadows change throughout the day. Students carry out an investigation to determine how the position of the sun changes the direction of the shadow at different times of day. Then, they go outside and interpret data from their shadow clock to determine what time of day it is.	Students observe patterns in the change of shadow length and position throughout the day. They use shadow patterns to determine what time of day it is, without the use of a clock.
Mystery 3 How can the Sun tell you the season? Formerly Mystery 4 in Spaceship Earth. Moved to Mystery 3 on 12/31/18.	5-ESS1-2	Sun, Earth's Orbit, Annual Patterns	The sun's path changes with the seasons. Summer days are longer and warmer, because the Sun follows a higher path across the sky. Winter days are shorter and colder, because the Sun follows a low path across the sky. In the summer, shadows are shorter because the Sun is high. In the winter, they are longer because the Sun is low. DCIs: ESS1.B	Students analyze and interpret data from photographs taken during different seasons and times of day, to determine how the sun's path affects Earth's surface. Students use evidence from the photos such as weather, shadow length, and sunrise/sunset time to construct an argument as to which season it is.	Students observe the pattern of seasons caused by the sun's path. The unique characteristics of each season are caused by the sun's position in the sky. Each season repeats each year.

Spaceship Earth Sun, Moon, Stars & Planets Grade 5 Mystery Science & NGSS Alignment - Earth & Space Science (ESS)

Grade 5 Space Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 4 Why do the stars change with the seasons? Formerly Mystery 3 in Spaceship Earth. Moved to Mystery 4 on 12/31/18.	5-ESS1-2	Annual Patterns	The night sky is full of stars that are grouped into constellations. The stars are seasonal, which means we only see certain stars depending on the season. As the Earth orbits around the sun, its position in the universe changes and we see different parts of the night sky. The seasonal patterns of the constellations repeat each year. DCIs: ESS1.B	Students develop a model of the universe, in order to construct an explanation for why we see different stars during different seasons. Using evidence from their model , students make an argument that supports the claim that the Earth orbits around the sun.	Students observe the seasonal pattern of stars. They note the change of constellations that are visible in the night sky, based on the season. This pattern is used as evidence to argue that Earth is orbiting the Sun, and we only see a part of the night sky at a time.
Mystery 5 How does the Moon change shape?	5-ESS1-2	Moon, Moon's Orbit, Lunar Cycle	If you look up at the night sky and see the Moon, then do it again a week later- it will be a different shape! But the Moon isn't actually changing shape, it's always a sphere. The Moon orbits Earth. When the sun is shining on the side of the Moon that faces Earth, it's a bright, round, full moon. When the sun is shining on the side of the Moon that faces away from Earth, the Moon looks darkit's a new moon. The Moon's phases are a pattern that go in a very certain order. Just like other sky patterns we've learned about, the cycle of the Moon is used to measure time. A full cycle takes about 28 days, or about a month, to repeat! DCIs: ESS1.B	Students develop a model of the sun and moon to carry out an investigation of the Moon's orbit and the different moon phases. Through this investigation, they obtain information about how the Moon goes through each phase. Then, they communicate this information by constructing an explanation about what causes the Moon's phases for someone who doesn't already know.	Students consider the phases of the Moon as a pattern . They learn that the orbit of the Moon around Earth causes each different phase. The phases repeat in the same order every 14 days, and then reverse in the same order for another 14 days. The total orbit of the Moon around the Earth takes 28 days, and then the pattern repeats.
Mystery 6 What are the wandering stars?	5-ESS1-2	Planets & Solar System	We've already learned that the sky is full of stars. If you look closely, some of those stars appear to be wandering-or moving- across the night sky! The ancient Greeks gave these wandering stars a special name. "planetes." Look	Students use a model of the solar system to learn the order of the planets and their relative distance from the sun, and each other. Using sidewalk chalk, they draw the sun and the planets at their relative distances from one another. Then, they play "Running to Neptune," where they run to different planets in the model in order to help them learn their order in the solar system.	Students use a system model of the solar system to understand the parts (the planets and sun) that make up the whole (the solar system). By creating a scaled model , they are able to observe an immensely large system of natural objects. They learn that by creating scaled models , people can interact with systems they wouldn't otherwise be able to.

(continued)

Spaceship Earth Sun, Moon, Stars & Planets Grade 5 Mystery Science & NGSS Alignment - Earth & Space Science (ESS)

Grade 5 Space Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 7} Why is gravity different on other planets?	5-PS2-1	Gravity	walked on the Moon so we know the Moon has gravity too. But the Moon has less gravity than the Earth. Gravity is a property of every planet and moon in our Solar System. Students discover that the amount of gravity depends on how massive a planet is. Unlike magnetism, gravity is a force that pulls on all objects. It always pulls them "down",	Students use mathematics and computational thinking to calculate how high they could jump on planets and moons in our Solar System. They analyze and interpret this data to construct an explanation for why the amount of gravity is different on other planets.	Students observe the pattern that the more massive a planet is, the more gravity it has. Students figure out that the amount of gravity a planet has (cause) will impact the height that they are able to jump (effect).

Note: Mysteries that address PE 5-ESS1-1 are in development.

Watery Planet Water Cycle, Resources, & Systems Grade 5 Mystery Science & NGSS Alignment - Earth Science (ES)

<u>Profound Perspective</u>: This unit helps students develop the idea that water is a profoundly important natural resource, but one which requires surprising ingenuity to find and maintain.

Grade 5 Earth Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 1} How much water is in the world?	5-ESS2-2	Water on Earth's Surface	Water is our most basic human need. Despite the fact that Earth is a watery planet, Earth's water is mostly salt watera form not fit to drink. Easily accessible fresh water is a surprisingly small amount by comparison. Of that fresh water, much of it is frozen in glaciers and ice caps. DCIs: ESS2.C	Students analyze and interpret data from world maps to determine the relative amounts of fresh, salt and frozen water. Students use mathematics and computational thinking to calculate areas on a map and graph values to compare and graph quantities of fresh, salt and frozen water on Earth.	Students use standardized units of area to compare the quantity of fresh, salt and frozen water on Earth. Students use proportional reasoning to represent quantities in their graph comparing different types of water.
Mystery 2 When you turn on the faucet, where does the water come from?	5-ESS2-2 5-ESS3-1	Water as a Natural Resource	Most people get their drinking water from water that's located underground, where there turns out to be a surprisingly large amount within structures called "aquifers." People use science ideas about the location of aquifers to make decisions about where to build communities. DCIs: ESS2.C, Foundational for ESS3.C & ESS2.A		Students reason about information they get about natural patterns to determine where underground water is most likely to be found. These patterns involve correlations between elevation and water depth as well as how plant and soil patterns can give clues about where drinkable water may be found.
Mystery 3 Can we make it rain?	5-ESS2-1	Water Cycle	Evaporation of ocean water is the ultimate source of rain, and thus all our easily accessible fresh water. (All water on Earth's surface is part of an interconnected system, the hydrosphere.) DCIs: Foundational for ESS2.A	Students create a model of the ocean and sky (hydrosphere and atmosphere). Students use the model to plan and carry out an investigation to determine how temperature influences evaporation and condensation.	Students reason about how the hydrosphere and atmosphere systems interact to produce rain. Students model the systems to explain how rain is created.
^{Mystery 4} How can you save a town from a hurricane?	5-ESS2-1 3-5-ETS1-1 3-5-ETS1-2 3-5-ETS1-3	Natural Disasters & Engineering	Hurricanes start out as small storms over the ocean. As they move across the ocean, warm water evaporates into the storm cloud, making the hurricane grow bigger and bigger. Hurricanes bring tons of rain, flooding entire cities. Engineers design solutions to protect towns from extreme flooding. DCIs: ESS2.A, ETS1.A, ETS1.B, ETS1.C	Students define the problem that a town needs protection from flooding. They obtain and communicate information about different types of engineers and work as a team to design solutions using their different types of flood protection. Students use mathematics and computational thinking design a solution under budget.	Students reason about how the hydrosphere and atmosphere systems interact to produce hurricanes and extreme flooding. They also consider the impact of hurricanes on the biosphere and geosphere system.

Note: Mysteries that address ESS3.C are in development.

Web of Life Ecosystems and the Food Chain Grade 5 Mystery Science & NGSS Alignment - Life Science (LS)

Profound Perspective: The food materials and energy that our bodies use for growth ultimately come from plants. Plants in turn derive their materials from air, water, and soil and their energy from the sun. Thus in a very real way, our bodies come from the earth and the sun. And when we die, decomposers return our materials and energy to the earth, to be used again by future organisms. The whole of nature forms a great system--the ecosystem.

Grade 5 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 1} Why would a hawk move to New York City?	5-LS2-1	Food Chains, Predators, Herbivores & Carnivores	Animals are all around useven in cities. We can learn to spot them by bearing in mind of one of the most basic relationships that all animals have with each other: some of them are predators and others are prey. (Where there are prey, there are predators, and vice versa.) DCIs: LS2.A, Foundational for LS1.C	Students construct models of different food chains by linking cards representing different organisms. The chains are used to explain the relationship between predators and prey. Students argue using evidence and reasoning about which organisms can be linked together and in what order.	This Mystery begins to lay the foundation for thinking about systems and energy/matter flow. By constructing chains of relationships between organisms, students are exposed to an example of a system. Food chains set students up for considering energy & matter flow in future Mysteries in this unit.
^{Mystery 2} What do plants eat?	5-LS1-1 5-LS2-1	Matter Cycle, Food Chain	Because predators depend on prey, all animals ultimately depend on plantseven carnivores that do not eat plants. Plants in turn derive their growth material primarily from water and air. DCIs: LS1.C, Foundational for LS2.B	Students plan an investigation to determine whether or not air has weight. As a whole class, students conduct an investigation to compare the weights of balloons with and without air. Students analyze and interpret data from the investigation to explain what happened and how the evidence may explain how plants gain weight.	Students observe that deflating a balloon causes the balloon to weigh less, leading to the conclusion that air has weight. This Mystery also lays the foundation for an understanding of conservation of matter by considering how plants gain weight as they grow due to the air they absorb.
^{Mystery 3} Where do fallen leaves go?	5-LS2-1	Decomposers & Matter Cycle	Decomposers are yet another category of living thing, which consume dead plant and animal material and produce soil. Fungiof which mushrooms and mold are typesis a conspicuous decomposer found everywhere, even in your home. DCIs: LS2.A, Foundational for LS2.B	Students ask questions about what conditions they think will induce and prevent the growth of mold. Students plan and conduct an investigation to test different conditions. Students analyze and interpret data that they record from their experiments to explain how different conditions impact mold growth.	-

Web of Life Ecosystems and the Food Chain Grade 5 Mystery Science & NGSS Alignment - Life Science (LS)

Grade 5 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
^{Mystery 4} Do worms really eat dirt?	5-LS2-1 5-LS1-1	Decomposers, Nutrients, & Matter Cycle	Earthworms aren't pests, they are decomposers! They eat dead and decaying matter, bacteria, and animal waste that is in soil. Worm castings (their excretions) release the nutrients from their food back into the soil. In addition to water and carbon dioxide from the air, plants need these nutrients to grow. Worms help gardens, not hurt them. DCIs: LS2.A, LS2.B, Supplementary LS1.C	Students observe worm behavior to help them determine a worm's role in a garden. Then, they conduct an investigation to test if worms prefer damp or dry places. They create an argument using the investigations results as evidence to support a claim about the worm's preferences. Lastly, students plan and carry out an investigation to answer a question they have about worms.	Students recognize that earthworms are part of a system, a food chain, with other organisms. Earthworms help matter flow back into the food chain.
Mystery 5 Why do you have to clean a fish tank but not a pond?	5-LS2-1	Ecosystems & Matter Cycle	All living things in an ecosystem depend on one another. In a pond, fish depend on plants as food and as a source of oxygen. Decomposers break down dead plant and animal matter, releasing micronutrients into the water. They also give off carbon dioxide. Plants take in carbon dioxide and give off oxygen. If one part is removed, the ecosystem would not function. DCIs: LS2.A, LS2.B	Students develop a model to show the flow of energy and matter within an ecosystem. Then, students develop a model of a pond ecosystem. They add different living things to the pond, considering what each organism needs to eat and how much carbon dioxide each organism adds or removes from the ecosystem.	Students recognize the living organisms in a habitat as a system , an ecosystem. If one organism were to disappear, the whole ecosystem would break down.
Mystery 6 Why did the dinosaurs go extinct?	5-PS3-1	Flow of Energy	It is believed that an asteroid impact <i>could</i> have caused the dinosaurs to go extinct. When the asteroid hit the earth it filled the sky with dust, ash and debris which blocked sunlight. Plants all over the world couldn't get the sun's energy they needed to grow. When plants died out, the herbivores would eventually die as well, followed by the carnivores. Ultimately, the asteroid collapsed the dinosaur's food web causing a mass extinction. DCIs: PS3.D, LS1.C	Students develop a model of a dinosaur food web to show how all animals get their energy. They use the model to help construct an explanation about how an asteroid killed all of the dinosaurs.	

Chemical Magic Chemical Reactions and Properties of Matter Grade 5 Mystery Science & NGSS Alignment - Physical Sciences (PS)

Profound Perspective: This unit helps students develop the concepts of "substances" and "chemical reactions." Students see that chemical reactions enable us to make new materials by transforming the ones we have. The results of these reactions are interesting and sometimes profoundly useful.

Grade 5 Life Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 1 Are magic potions real?	5-PS1-1 5-PS1-2	Introduction to Chemistry	The alchemists were a historic group of people who experimented with mixing different substances together to make a potion. They wondered if their potions could transform materials. DCIs: Foundational PS1.A and PS1.B	Students plan and carry out an investigation to see which solution will turn a dull penny into a shiny penny. Students develop a conceptual model in order to construct an explanation for their test results. They revise their conceptual model as they develop a more sophisticated understanding of particles.	Students observe the effect of solutions on a dull penny. Students explore that substances undergo change .
Mystery 2 Could you transform something worthless into gold?	5-PS1-1 5-PS1-2	Particulate Nature of Matter	The alchemists were on a quest to transform ordinary metal into gold, so that they could become rich. To do this, the alchemists observed and investigated the many materials around themthe substances which things are made of. They discovered that substances are able to change form, and that some substances may even <i>appear</i> to vanish, almost like magic. DCIs: <i>Foundational PS1.A and PS1.B</i>	Students carry out an investigation to determine what happens when they place a steel object in the same solution that turned their pennies shiny in Mystery 1. Students construct an explanation by developing a conceptual model to show how the solution affects the steel nail.	This Mystery lays the foundation for an understanding of conservation of matter by considering that the copper from the penny did not disappear, but only dissolved into the solution. Students consider the variety of scale within natural objects. They understand that there are extremely small, to small to see, copper particles dissolved in their solution.
^{Mystery 3} What would happen if you drank a glass of acid?	5-PS1-3	Acids, Reactions & Properties of Matter	The alchemists discovered acidsa set of substances that is extremely <i>reactive</i> (undergoes chemical changes easily). A chemical <i>reaction</i> happens when different substances are mixed and it causes some kind of change. We can tell a chemical change is happening by observing indications such as fizzing, a color change, or dissolving. DCIs: PS1.A	Students conduct an investigation to discover if a reaction occurs when mixing two substances. Analyzing the data , students determine which substances react with acid. Next, students decide how to test unknown liquids to see if they are acids.	Students consider the cause and effect relationship when combining chemicals to produce reactions. Students consider that combining two chemicals may result in a change in the substance.

Chemical Magic Chemical Reactions and Properties of Matter Grade 5 Mystery Science & NGSS Alignment - Physical Sciences (PS)

Grade 5 Physical Science	Performance Expectations	Topics	Disciplinary Core Ideas (DCIs) (Mystery Conceptual Flow)	Scientific & Engineering Practices (SEPs)	Crosscutting Concepts (CCC)
Mystery 4 What do fireworks, rubber, and silly putty have in common?	5-PS1-4	Chemical Reactions	The alchemists were not successful in finding an easy way to make gold, but all of their observations and experimenting with substances turned out to be hugely important. For example, when acids react with other substances, they form entirely new substances. The new substance will have different properties from the original substances. Some of these properties are useful. Chemical reactions are how we get new substances and discover new properties! DCIs: PS1.B	Students conduct an investigation to see which chemicals, when combined, result in a chemical reaction. They construct an explanation to share which chemicals reacted and formed a new substance with a goo consistency. In Part 2 of the activity, students make their own goo by mixing the two chemicals which formed a goo-like substance in Part 1.	Students consider the cause and effect relationship between chemicals that are combined to form new substances. Students consider that combining two chemicals may result in a change when a substance with unique properties is created.
^{Mystery 5} Why do some things explode?	5-PS1-1	Gases & Particulate Nature of Matter	Not all explosions are big and fiery, they can be small too! The alchemists were the first to discover these small explosions. They noticed small bubbles forming when some substances and objects were placed in an acid. The substance, gas, was hard to captureit would escape the container, or make it burst. Gases can be visible or invisible and are made up of many tiny particles that you can't see. All explosions are caused by a buildup of gas moving outward that bursts the container they are in. DCIs: PS1.A	Students conduct an investigation to see what happens when baking soda and vinegar react inside a closed ziplock bag. They develop a particle model to explain their resultsthat gas particles are created and move outward, causing the ziplock bag to expand or even burst.	Students consider that combining two chemicals may result in a change when a substance with unique properties is created. Students understand that particles are very small, to small to see, compared to other natural objects.

